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In tro duction

The discovery of halo nuclei dates back to the mid-eighties, when labora-
tories becameable to create and accelerateradioactive ion beams. This
technical breakthrough allowed the study of exotic nuclei through nuclear
reactions. It has been found that somevery neutron-rich nuclei exhibit an
astonishingly large matter radius in comparisonwith their closeneighbours
[Tan85a, Tan85b]. This characteristic is now understood as the sign of a
very peculiar structure. These nuclei are indeed seenas a core, compris-
ing most of the nucleons,to which one or two neutrons are loosely bound.
The strangenessof this structure is that the valenceneutrons have a very
high probability of presenceat a large distance from the core, far beyond
the nuclear-interaction range. This meansthat they are tunnelling well out-
side the classicallyallowed region. Therefore they constitute a sort of halo
surrounding the core [HJ87]. The core, remaining almost unperturbed by
the presenceof the halo, can be seenas a usual nucleus. Up to now, only
one- and two-neutron halo nuclei have beenobserved. The best known are
11Be (with a one-neutronhalo), and 6He, 11Li and 14Be (with two-neutron
halos). The existenceof proton haloshasbeensuggestedin someproton-rich
nuclei. However, the presenceof the repulsive Coulomb interaction hinders
the formation of proton halos [Tan96].

This new nuclear structure is therefore a stringent test for the current
nuclear models. This explains that, since their discovery, halo nuclei have
been the subject of many experimental studies (see Refs. [HJJ95, Tan96,
TK03] for reviews). In theseexperiments, information about this structure
is usually obtained by the dissociation of the halo from the core. Coulomb
breakup is of particular interest [Nak94]. In this reaction, the halo neutrons
are dissociated from the core through its Coulomb-dominated interaction
with a heavy target. The main advantage of this reaction lies in the fact
that the dominant Coulomb interaction reducesthe uncertainties associated
with the nuclear interaction. In order to correctly extract information about
the structure of thesenuclei from experimental crosssections,an accurate
theoretical description of this mechanism is necessary.

In recent years,several theoretical methods have beendeveloped to study
the Coulomb breakup of halo nuclei (seeRefs. [TS01a, AN03] for recent re-
views). Thesemethods include the coupledchannelswith a discretisedcon-
tinuum [Kam86], the adiabatic approximation [Tos98], and the semiclassical
approximation [KYS94, EBB95]. In these techniques, the halo nuclei are
viewed astwo- or three-body systems(the coreplus the halo neutrons). Due
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2 INTR ODUCTION

to the simplicity of the two-body model, the one-neutronhalo nuclei are an
excellent testing ground for the theoretical study of Coulomb breakup. This
explainswhy most methods focuson thesenuclei.

In this work, we usethe semiclassicalapproximation which leadsto the
resolution of a time-dependent Schr•odinger equation. In this method, the
relative motion between the halo nucleusand the target is described by a
classical tra jectory. The halo nucleus is therefore seenas evolving in the
varying Coulomb and nuclear �elds of the target. Several methods have
beenproposedto solve this equation. Usually, the projectile wave function
is expandedinto partial waves,and the time-dependent potential simulating
the projectile-target interaction is expandedinto multip oles[KYS94, EBB95,
TS01b]. This method allows a fair description of the halo nucleus. However,
it requiresheavy analytical treatments of the projectile-target potential, and
leadsto the needto solve setsof coupledequations.

The aim of this work is to analyse, implement and improve another
method of solving the time-dependent Schr•odingerequation. In this method,
the projectile wave function is expandedupon a three-dimensionalspherical
mesh[MB99]. This enablesus to both retain a fair description of the halo
nucleus, and obtain simple and accurate treatment of the time-dependent
potential. Accordingly, this method, which does not require the multip ole
expansionof the time-dependent potential, leadsto a simple time-evolution
calculation.

This numerical method is then used to study the Coulomb breakup of
three weakly bound nuclei. The �rst one is the very well known 11Be.
This nucleushas beenstudied by many authors both theoretically [KYS94,
RVB96, Des97] and experimentally [Fuk91, Nak94, Kel95]. However, some
uncertainty remainsabout the structure of its ground state. The Coulomb
breakupof this nucleushasrecently beenremeasured[Nak03]. It is therefore
interesting to seewhether the comparisonof our model with thesenew data
may give us a better insight into the structure of this nucleus.

The method is alsoapplied to the Coulomb breakupof the candidateone-
neutron halonucleus15C. Recently, this reactionhasbeenstudiedexperimen-
tally [Nak03]. This enablesus to compareour model with the experiment in
this casetoo.

Finally, we study the dissociation of a candidateone-protonhalo nucleus:
8B. Besidesits possibleproton-halo structure, this reaction is of particular
interest in astrophysics. Indeed it can simulate the inversereaction of the
radiative capture of oneproton by 7Be, which takesplacein the sun [BR96].

Chapter 1 consistsof an introduction about the physics of halo nuclei.
After a description of the halo structure, the main experiments usedfor its
study are brie
y reviewed. The proton-halo structure is alsoexamined.

Chapter 2 contains the theoretical framework in which our method is
developed. This includesthe description of the semiclassicalapproximation,
and of the corresponding time-dependent Schr•odinger equation. The main
techniquescurrently usedto solve this equation are presented aswell. Some
other methods developed for studying the breakup of halo nuclei are also
reviewed.
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In Chapter 3, the main theoretical ingredients used in our method are
described. Theseinclude the two-body structure usedto model one-nucleon
halo nuclei, and the choice of the potentials which simulate the interaction
between the halo nucleus and the target. This chapter also contains the
description and parametrisation of the classicaltra jectories used to model
the projectile-target relative motion. Its last sectionlooks at the calculation
of the breakup cross sectionsand other observables computable from the
output of our calculations.

Chapter 4 comprisesa detailed description of the method we useto solve
the time-dependent Schr•odingerequation. This chapter is divided into three
sections.In the �rst, the angular treatment of the wave function is explained.
The secondsection examinesthe discretisation of the radial variable. The
actual algorithm usedto compute the time evolution of the projectile wave
function is detailed in the third sectionof this chapter.

In Chapter 5, we present our study of the breakupof 11Be. The resultsof
our calculationsare comparedwith the experimental data. This chapter also
contains the analysesof di�eren t aspects of the method. Theseinclude the
choiceof the potentials simulating the projectile-target interaction aswell as
the choiceof the classicaltra jectory.

In Chapter 6, we turn to 15C, and compareour results with the recently
measuredbreakup crosssection.

In Chapter 7, we present the results obtained for 8B, and comparethem
with experimental data.

The conclusionsand prospectsof this work are given in the �nal section.
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Chapter 1

Halo nuclei

1.1 The Halo structure

The development of radioactive nuclear beamsin the mid-eighties enabled
physiciststo study nuclei far from stabilit y [Tan85a, Tan85b]. This led to the
discovery of neutron halo nuclei. Theselight nuclei, locatednear the neutron
drip line, exhibit a high probability of presenceof oneor two looselybound
neutrons at a large distance from the other nucleons. Theseneutrons can
be viewed asa halo surroundinga core composedof the remaining nucleons.
The coreseemsto exhibit more or lessthe sameproperties (matter density,
electromagneticmoments, etc.) as if it were free of the halo1.

The currently known halo nuclei display a halo with either one neutron
(like 11Be) or two neutrons (like 6He, 11Li and 14Be). Table 1.1 contains
the major halo characteristicsof those nuclei. Firstly, they exhibit particu-
larly low one-neutron(Sn ) or two-neutron (S2n ) separationenergies[AW95]
in comparisonwith the meanbinding energyof the stable nuclei, which lies
around 8 MeV per nucleon [Kra88, Chapter 3]. It should be noted that
whereas11Be exhibits the \usual" order Sn < S2n , two-neutron halo nuclei
have S2n < Sn . In fact, two-neutron halo nuclei are borromean nuclei. These
nuclei exhibit a three-cluster structure in which none of the binary subsys-
temsare bound. For example11Li is bound though neither 10Li nor dineuton
exist2.

Secondly, the halo neutron root meansquare(r r ms
n ) of 11Be [Nak94] and

the root-mean-squaren-n separations(r r ms
nn ) of the two-neutron halo nuclei

[Mar00] are large when comparedwith the 2-3 fm range of the nuclear in-
teraction. This meansthat the looselybound halo neutrons spend most of
their time beyond the rangeof the interaction that binds them to the core.

Up to now, there is no generallyacceptedde�nition of halo nuclei. How-
ever, in this introductory chapter, we follow Riisager, Fedorov, and Jensen
[RFJ00], and make use of their de�nition: \Quantum halos are de�ned as
systemswith dominating few-body structure and radii largecomparedto the

1The concept of halo nucleus was �rst intro duced by Hansenand Jonson in [HJ87].
2The epithet borromean was intro duced by Zhukov et al. [Zhu93] in allusion to the

Borromeo family blazon. It represents three rings bound together in such a way that the
breakageof one of them leavesthe other two free.

5



6 CHAPTER 1. HALO NUCLEI

Nucleus Sn (MeV) S2n (MeV) r r ms
nn or r r ms

n (fm)
11Be � 10Be+ n 0.504 7.317 6:4 � 0:7
6He � 4He+ 2n 1.864 0.974 5:9 � 1:2
11Li � 9Li + 2n 0.330 0.300 6:6 � 1:5

14Be � 12Be+ 2n 1.850 1.340 5:4 � 1:0

Table 1.1: Neutron separationenergiesand neutron root meansquareradii
of the major halo nuclei. Sn and S2n areobtained from Ref. [AW95], the r r ms

n
of 11Be is taken from [Nak94], and the r r ms

nn of the two-neutron halo nuclei
are taken from [Mar00]

.

sizesof the classicallyallowed regions". This de�nition emphasisesthe three
main halo characteristics.

(i) Halo nuclei exhibit a strong cluster structure. That is to say, they are
well described as a coreplus oneor two neutrons.

(ii) Halo nuclei havea largematter radius in comparisonwith the rangeof
the nuclear interaction. This is explainedin the few-body model by the fact
that the halo neutrons have a high probability of being at a large distance
from the core. In other words, their wave function is assumedto tunnel
far outside the classically allowed region. This region corresponds to the
positionsthe halo neutronswould occupy if their relative motions to the core
were treated classically. For example,in a two-body structure (i.e. for one-
neutron halos) thesepositionsare thoseat which the interaction potential is
lower than the binding energyof the system. This secondcondition implies
the third one.

(iii) Halo nuclei are weakly bound, i.e. the separationenergyof the halo
neutrons is very low. This two- or three-body structure can therefore be
easily broken.

With the aim of illustrating this de�nition, let us considera one-neutron
halo represented by a simple two-body structure: a pointlik e neutron weakly
bound to a pointlik e structurelesscore by a short-rangepotential. In this
simple model, the radial wave function ul describing the core-halorelative
motion in the bound state of separationenergySn and orbital momentum l
is solution of [CDL73, Chapter VI I]

�
d2

dr2
ul (r ) +

l(l + 1)
r 2

ul (r ) +
2�
�h2 V(r )ul (r ) = � � 2ul (r ): (1.1)

In this equation, V is the attractiv e potential modelling the core-neutron
interaction, � =

q
2�S n=�h2, and � is the reducedmassof the system.

The solution of this equationexhibits the following asymptotic behaviour

ul (r ) � !
r !1

Cle� �r : (1.2)

This simple picture illustrates the fact that the halo neutron is tunnelling
beyond the rangeof the potential and that the probability of �nding it outside
of the potential well is increasingas the binding energySn decreases.
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However, a low one- or two-neutron separation energy, though a good
clue, is by no meansa su�cien t condition for the display of a halo structure.
For example, we seethat when the orbital momentum l is increased,the
secondterm of the left hand sideof Eq. (1.1) becomesmore important. This
term, alsoknown asthe centrifugal barrier , hasthe e�ect of pushingthe halo
neutron inside the nucleus. It therefore dampens its wave function outside
the rangeof the potential V . This is illustrated in Fig. 1.1.

In the upper part, the sum of the potential V and the centrifugal barrier
l(l + 1)=r2 (also known as the e�ective potential) is displayed for s (l = 0), p
(l = 1), and d (l = 2) orbitals. The depth of V is adjusted in order to obtain
the sameneutron separationenergyfor all l (0.5 MeV). The wave functions
of the corresponding bound states are shown in the lower part of Fig. 1.1.
They all exhibit the sameasymptotic behaviour (1.2) but the magnitude Cl

of their exponential tails diminisheswith increasingl. This meansthat the
neutron hasa lower probability of presenceat a large distancefrom the core
for high l. It is usually acceptedthat one-neutronhalosappear mainly in s
and p orbitals [RFJ00, FJR93].

This illustrates the formation of one-neutronhalos in a simple two-body
model. The large radius of halo nuclei is understood as an important tun-
nelling of the halo neutron outside the classicallyallowed region. This tun-
nelling requiresa very low binding energyof the core-halosystem,asshown
by (1.2). Nevertheless,this condition is not su�cien t asillustrated in Fig. 1.1.
A more complete discussionabout halo nuclei formation as well as a clas-
si�cation of halo states can be found in Refs. [FJR93] and [RFJ00]. These
authors also apply the samekind of reasoningin the caseof two-neutron
halos.

This new exotic feature in nuclear physics is of great interest not only
becauseit constitutes a stringent test for the available nuclear models but
also becauseit opensup new research �elds in nuclear science.Halo nuclei
are therefore the focus of numerous theoretical and experimental studies
[Nun03, TK03].

In this �rst chapter, we will try to give a rapid overview of the di�eren t
experiments that are used as a probe into the halo structure. For more
information we refer the readerto the review articles [TK03, Nun03, Tan96,
HJJ95].
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Figure 1.1: (a) Pro�le of the e�ectiv e potentials (i.e. sum of the actual
potential V and the centrifugal barrier) for s (solid line), p (dotted line), and
d (dashedline) orbitals. Their depths are adjusted so as to reproduce the
samebinding energy (0.5 MeV). (b) Corresponding radial wave functions.
They all display the same asymptotic behaviour (1.2) but higher-l waves
exhibit a lower probability of presenceat a large distance.
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Figure 1.2: Interaction radii (RI ) of He, Li, Be and B isotopesas a function
of the massnumber A. The dotted line shows the usual A1=3 dependenceof
the nuclear matter radius. Valuesare from Refs. [Tan85b, Tan88].

1.2 Prob es in to the halo structure

1.2.1 In teraction cross section and radius

The �rst value that has been measuredon exotic nuclei using secondary
radioactive beamsis the interaction crosssection(� I ) [Tan85a, Tan85b]. It
is de�ned as the total crosssection for all processesin which the projectile
number of nucleonsis changed.

From the interaction crosssections,one can de�ne, using a simple geo-
metrical model, the interaction radius [Tan85a]:

� I (P; T) = � (RI (P) + RI (T))2; (1.3)

where P is set for projectile and T for target. It has beenshown that the
interaction radius is moreor lessindependent of the target [Tan85a, Tan85b].
Measuringthe interaction crosssectionsfor di�eren t targets then allows the
interaction radius of a projectile to be obtained. Fig. 1.2 represents the
interaction radii of several isotopesof He, Li, Be and B as a function of the
massnumber A [Tan85b, Tan88].

In nuclear theory, it is well known that stable nucleusdensity is rather
constant up to a certain radius from which it drops to zero [Kra88, Chap-
ter 3]. The central density is quite similar from the lightest nuclei to the
heaviest. This led to the semiclassicalliquid-drop model in which nuclei are
viewed as liquid droplets with a homogeneousdensity. In this model, a nu-
cleus containing A nucleonsis therefore seenas a spherewith a radius R
proportional to A1=3:

R = r0 A1=3 (1.4)
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with r0 ' 1:2 fm.
If oneassumesthat the interaction radius is somehow a measureof the nu-

clearsize,it should follow the A1=3 law predicted from the liquid-drop model
(1.4). We can seefrom Fig. 1.2 that most of the nuclei have an interaction
radius that lies along the A1=3 dotted curve. However somenuclei near the
neutron drip line (like 6He, 8He, 11Li, 11Be or 14Be) exhibit anomalouslyhigh
interaction radii in comparisonwith their neighbours. This seemsto indicate
that thosenuclei have large nuclear radii due to an extendedmatter density
and/or a major deformation [Tan85b].

1.2.2 Matter densit y

In order to explain this unexpected increaseof the nuclear radius of some
unstablenuclei near the neutron drip line, it might be of interest to measure
their nuclear density distribution. Becauseof their short life, a usual mea-
surement of their density, e.g. usinghigh energyelectronor proton scattering,
is di�cult. Fukuda et al. [Fuk91] proposedto make use of a semiclassical
optical limit of the Glauber model to infer the 11Be density from the inter-
action crosssection. In this model [Kar75], the interaction crosssection for
projectile P and target T canbe expressedasa function of the projectile and
target matter densities.This model had beenshown to give accurateresults
for light stable nuclei at high energyusing Gaussianmatter densities.

Fukuda et al. [Fuk91] have measuredthe interaction crosssectionsfor
11Be with C and Al targets at an energy of 33A MeV. Using the earlier
measurements of Tanihata et al. [Tan88] at 790A MeV for the sameprojectile
and targets, they comparedthe experimental � I s with the calculated ones
using di�eren t distributions.

Firstly, they tried to reproduce the interaction cross sections using a
Gaussiandistribution. Secondly, they performeda calculation with a Gaus-
sian plus a Yukawa tail distribution which hasan asymptotic behaviour sim-
ilar to (1.2).

They found that both energyand target dependencescouldbereproduced
only when using the Yukawa tailed distribution. This result seemsto show
that the enhancement of the nuclear radius of 11Be is due to an extended
density rather than to a signi�cant deformation of the nucleus. This slowly
decreasingdensity tail is now understood asa halo structure. 11Be is seenas
madeup of a 10Be coresurroundedby a looselybound neutron which forms
the halo. The core density is assumedto have an approximately Gaussian
shape like stable light nuclei while the halo neutron is responsible for the
long tail of the matter distribution.

Other experiments have beenperformed[Tan92, Oza01]in order to infer
the density of halo-nucleuscandidatesfrom their interaction crosssections
with di�eren t targets. The way they deducedthe matter distribution from
their measurements is not exactly the sameas that of Ref. [Fuk91]. They
made useof an improved Glauber-type model [OYS92, AT96] in which the
cluster structure of the halo nuclei is taken into account. Their measure-
ments enabledTanihata et al. to infer the presenceof a long tail in the 11Li
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distribution. Ozawa et al. con�rmed the extendeddensity of 11Be deduced
by Fukuda et al. and found evidenceof a one-neutronhalo structure in some
neutron-rich nuclei such as 19C.

Recently, experiments of elastic proton scattering by radioactive nuclei
have beenperformed(seee.g. [Ege02]). In thoseexperiments, a radioactive
ion beamis directed onto a hydrogentarget and the di�eren tial crosssection
is measured. From this crosssection, the density of the projectile can be
inferred using a Glauber-type model. For example, Egelhof et al. [Ege02]
were able to deducefrom their measurements the matter density of He and
Li isotopes. Their results con�rmed the extended matter distribution in
11Li and 6;8He. Furthermore, their density parametrisation enabledthem to
extract the density of the core of thesenuclei. They comparedit with that
of the corresponding nucleus(9Li and 4He respectively) and found that both
distributions werecloseto each other.

This meansthat the presenceof the halo doesnot seemsigni�cantly to
modify the core. Therefore, the latter might be seenas an unperturbed
nucleus.

1.2.3 Halo breakup

In the experiments described in the previousparagraphs,information about
nuclei was obtained through the measurement of interaction crosssections.
Thesecorrespond to all the processesthat modify the nucleonnumber of the
studied nucleus. Among them, the halo breakup is of particular interest. In
this reaction, the halo dissociatesfrom the corethrough nuclearand Coulomb
interactionswith the target. The study of halo breakupcan thereforeconvey
information about the halo structure.

Furthermore, this reaction turns out to be very likely in collisionsinclud-
ing a halo nucleus. In Ref. [Kob88], Kobayashi et al. measuredfragment-
production crosssectionsfor a two-neutronhalo projectile 11Li on a C target
at an energyof 790A MeV. They found a remarkably higher crosssectionfor
production of 9Li than for any other fragment of the projectile (seeTable1.2).
This reaction correspondsto two-neutron removal and its large crosssection
is qualitativ ely understood asa high probability of the removal of the loosely
bound halo neutrons.

Usinga Glauber-type model in which the halo structure of 11Li wastaken
into account, Ogawa et al. have shown that the two-neutron removal cross
section(� 2n ) wasequalto the di�erence betweenthe 11Li and 9Li interaction
crosssectionwith target T [OYS92]:

� 2n (11Li ; T) = � I (11Li ; T) � � I (9Li ; T) (1.5)

The one-or two-neutron removal crosssectionshave beenmeasuredfor one-
or two-neutron halo nuclei respectively. They have beencomparedwith the
interaction crosssection of the nucleusand that of the core, and relatively
good agreement with (1.5) hasbeenfound. For illustration, Table1.3displays
those valuesfor 11Be and 11Li nuclei with a C target at 790A MeV (values
are extracted from Refs. [Fuk91, Tan88, Kob88, Tan85b]).
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Fragment Crosssection(mb)
9Li 213� 21
8Li 62� 9
7Li 33� 8
6Li 7 � 3
8He 26� 6
6He 45� 8
4He 47� 10
3He 6 � 3

Table 1.2: Production cross section of the 11Li fragments measuredby
Kobayashi et al. [Kob88] on a C target at 790A MeV.

Nucleus Core � I (N) � I (C) � I (N) � � I (C) � n (N) or � 2n (N)
11Be 10Be 942� 8 813� 10 129� 18 169� 4
11Li 9Li 1047� 40 796� 6 251� 46 213� 21

Table 1.3: Interaction crosssectionof one-and two-neutron halo nuclei (N),
of their core (C), di�erence betweenthem and one-or two-neutron removal
crosssection. Crosssectionshave beenmeasuredfor C target at an energy
of 790A MeV. Valuesare expressedin mb and are taken from Refs. [Fuk91,
Tan88, Kob88, Tan85b].

This illustrates the fact that the increaseof the interaction crosssection
for halo nuclei can be seenas resulting from the halo breakup process.

The measurements mentioned above were performedusing light targets.
In those reactions,the Coulomb interaction is negligible. Experiments have
beenconductedin order to study the importanceof the nuclearand Coulomb
interactions in the halo breakup. Blank et al. have measuredthe � 2n for 11Li
on both light and heavy (high Z) targets [Bla93] (seeTable1.4). The nuclear
contribution (� N

2n ) was calculated with the eikonal model of Bertsch et al.
[BES90]. The Coulomb contribution (� C

2n ) to the dissociation was obtained
by subtracting � N

2n from � 2n .
The proportion of the Coulomb contribution to � 2n increases,asexpected,

with the target proton number. Beingnegligiblefor light C target, it becomes

Target � 2n � N
2n (calculated) � C

2n (deduced)

C 170+30
� 30 235 � 70+30

� 30

Sn 1090+290
� 220 584 510+290

� 220

Pb 1970+230
� 300 698 1270+230

� 300

Table1.4: Two-neutron removal crosssectionsfor 11Li on di�eren t targets at
an energyof 80A MeV. The nuclear part (� N

2n ) of the crosssectionwas cal-
culated following [BES90],and the Coulomb contribution (� C

2n ) wasdeduced
by subtracting � N

2n from � 2n . Values,expressedin mb, are from Ref. [Bla93].



1.2. PROBES INTO THE HALO STRUCTURE 13

the most frequent dissociation processfor heavy Pb target. The Coulomb
halobreakupcanthereforebeanothersourceof information about halostruc-
ture.

1.2.4 Momen tum distribution of the fragmen ts

Besidesthe con�rmation of the halo structure obtained from the increaseof
the dissociation crosssection,breakup processcan also provide information
about the density distribution of the halo.

Let us consideran extendedlooselybound two-body system(e.g. a one-
neutron halonucleus). Accordingto the Heisenberguncertainty principle (see
e.g. [CDL73, pp 27-29]),the largespatial expansionof the systemwill leadto
a narrow distribution in the momentum space.Therefore,a measurement of
the momentum distribution of the constituents would give usefulinformation
about the structure of the system. Alas, it is necessaryto breakthe systemto
obtain such a measurement and thus to modify it. Nevertheless,it is usually
assumed[Han96, Orr97] that the breakup fragments still carry information
about the structure of the nucleus prior to the dissociation. This picture
can be generalisedfor two-neutron halo nuclei by consideringthree-cluster
systemswidely extended.

This idea has led to many experiments (seeRef. [Orr97] for a review)
in which physicists have measuredthe momentum distribution of either the
halo neutrons or the core following the dissociation of halo nuclei. This dis-
tribution merelyconsistsof the breakupcrosssectionmeasuredasa function
of the momentum of one of the fragments. One usually considersonly the
momentum component either parallel or perpendicular to the incident beam.
Onethen speaksabout the parallel-momentumdistribution or the transverse-
momentumdistribution respectively. It hasbeenfound that the halo-nucleus
fragments indeed exhibit narrow momentum distributions [Kob88, Kel95].
Therefore, an observed narrow width in the fragment momentum distribu-
tion can be consideredto be the sign of an extended wave function and
thereforean indication of a halo structure.

Table 1.5 displays the value of the full width at half maximum (FWHM)
of the parallel-momentum distributions of the coresafter the breakupof some
halo nuclei. Thesevalueswere measuredat medium energieswith light tar-
gets. For comparison,wealsogive the FWHM of the parallel-momentum dis-
tribution of the 13C fragment following the 14C breakup. The core-momentum
distribution is indeedmuch narrower for halo nuclei than for nuclei which do
not exhibit a halo structure.

This kind of measurement can thus be usedasa tool for discovering new
halo nuclei. Recently, such an experiment has beenperformedwith the aim
of exploring the neutron drip line for halo-nucleus candidates[Sau00]. In
this experiment, Sauvan et al. have measuredthe corefragment longitudinal
momentum distribution for one-neutronremoval on a C target for B, C, N,
O, and F isotopes. They obtained narrow widths for 15C and 14B. Small or
moderate enhancements of their reaction crosssectionslead the authors to
suspect a smaller one-neutronhalo structure in thesenuclei.
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Nucleus Target Fragment E (A MeV) FWHM (MeV/ c) Ref.
11Li C 9Li 66 45:2 � 2:4 [Orr92]
6He C 4He 24 94:6 � 5:4 [Wan02]
11Be Be 10Be 63 41:6 � 2:1 [Kel95]
14C C 13C 71 180� 5 [Sau00]

Table 1.5: Width (FWHM) of the parallel-momentum distributions of the
coresfollowing the breakupof well known halo nuclei on light targets. Value
measuredfor the non halo nucleus14C is shown for comparison.

Nucleus � (� N ) Q (mb)
9Li 3.4391 � 27:4:0 � 1:0
11Li 3.6678 � 31:2 � 4:5

Table 1.6: Electromagnetic moments of Li isotopes. Magnetic dipole mo-
ments (� ) are expressedin nuclear magneton(� N = 3:15245� 10� 8 eV/T)
and electric quadrupole moments (Q) are expressedin mb. Valuesare sum-
marisedin Ref. [Tan96].

1.2.5 Proton distribution

The previoussectionsshowed that a number of neutron-rich nuclei exhibit a
two- or three-clusterstructure, which is seenasa corecontaining most of the
nucleonssurrounded by one or two loosely bound neutrons. The question
that arises from this viewpoint concernsthe structure of the core. Is it
behaving like a usual nucleusor doesit exhibit deformation?

We have seenin Sec.1.2.2that calculationsperformedin order to repro-
duce the energy and target dependencesof the interaction crosssection of
halo nuclei predicted a usual density for the core. We shall seein this para-
graph that other measurements cangive usan insight into the corestructure.

The halo structure implies that all the protons are con�ned in the core.
Therefore,measurements of propertiessensitive to the proton density should
re
ect the shape of the core.

In Refs. [Arn87, Arn92], Arnold et al. measuredthe magnetic dipole
(� ) and the electric quadrupole (Q) moments of 11Li. They comparedtheir
valueswith the electromagneticmoments of other Li isotopes. Thesevalues
are displayed in Table 1.6 for 9Li and 11Li. The small di�erence betweenthe
11Li and the 9Li moments is in agreement with the presumed11Li structure.
The quadrupole moment is indeed dependent on the proton density alone,
the closenessof 11Li and 9Li valuesthereforecon�rms the presenceof a 9Li
core in 11Li. The sameinformation is obtained from the � values. It should
be noted that the 3:67� N value of the magnetic dipole moment of 11Li is
closeto the Schmidt value of 3:79� N . This value is obtained from a simple
shell model [Kra88, Chapter 5] in which the magnetic dipole is assumedto
be mostly due to the unpaired p3=2 proton.

Another measurement that can be carried out in order to study the core
structure is the charge-changing crosssection (� � Z ). If the presenceof the
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Figure 1.3: Comparisonbetweeninteraction crosssections(� I , opensquares)
and charge-changingcrosssections(� � Z , full circles)for di�eren t Li isotopes.
Valuesare measuredat 80A MeV for a C target [Bla92].

halo leadsto a large deformation of the core, the � � Z , which can be related
to the proton density through a Glauber-type model, should be modi�ed.
Blank et al. [Bla92] have measuredthe charge-changing crosssection for
Li isotopes on a C target at 80A MeV. The fact that � � Z does not vary
much with A, while the interaction crosssection increaseswith the neutron
number (seeFig. 1.3), indicatesthat the proton density doesnot present any
signi�cant changefrom one isotope to another.

Recently, a newexperiment hasbeencarriedout by Chulkov et al. [Chu00].
They have measuredthe charge-changing crosssection for B, C, N, O and
F isotopes on C target at an energy around 1000A MeV. They have con-
�rmed the fact that near the neutron drip line � � Z is nearly constant. Using
a Glauber-type model, they inferred that the proton distribution does not
changemuch from one isotope to another and therefore that the charge ra-
dius is not strongly modi�ed by the additional neutrons. According to their
study, 19C can be seenas a one-neutronhalo surrounding a 18C core.

1.3 Proton halo

All the precedingsectionsconcernneutron halos. One might ask whether
proton halosarepossible.The main di�erence betweenneutronsand protons
lies in the electric chargeexhibited by the latter. When consideringa proton
weakly bound to a chargedcore,the long-rangerepulsive Coulomb potential
is addedto the short-rangedattractiv e nuclear interaction. This leadsto the
appearancefor protons of a Coulomb barrier. Its e�ect is qualitativ ely the
sameas that of the centrifugal barrier (seeSec.1.1). It pushesthe protons
inside the nucleus, diminishing their probability of tunnelling outside the
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Nucleus Sp (MeV) S2p (MeV)
8B � 7 Be+ p 0.14 5.7
17F � 16 O + p 0.60 12.7

17Ne � 15 O + 2p 1.5 0.94

Table 1.7: Properties of proton-halo candidates. One-proton (Sp) and
two-proton (Sp2) separation energy expressedin MeV are obtained from
Ref. [AW95].

nuclear-interaction range. Therefore the formation of proton halos, albeit
not impossible,is much lessprobable than that of neutron halos.

The major proton-halo candidatesare 8B, 17F, and 17Ne [Tan96]. Ta-
ble 1.7displays the one-proton(Sp) and two-proton (S2p) separationenergies
for thosenuclei. The very low Sp of 8B and 17F suggestthat they exhibit a
one-protonhalo structure. 17Ne exhibits a very low S2p, even lower than its
Sp. This might be the sign of a two-proton halo structure.

However, as in the caseof neutron-halo nuclei, this property is not suf-
�cien t for developing a halo. Several experiments have beencarried out in
order to con�rm the existenceof proton halos.

The caseof 8B is unclear. A measurement of its electric quadrupole
moment [Min92] showeda largeenhancement in comparisonwith that of 8Li,
its mirror nucleus3. This indicates a large deformation of 8B, suggestinga
proton-halo structure. But its interaction crosssections[Tan88] do not show
any signi�cant enhancement in comparisonwith its neighbours. Moreover,
a microscopiccalculation of the 8B structure [BDT94] could reproduce the
large electric quadrupole moment without any notion of halo.

In the caseof 17F, it is usually admitted that its ground state doesnot
exhibit a halo structure [Oza94]. However, it seemsthat its excited state
displays a halo [KB98]. This can be explainedby modelling 17F as a proton
loosely bound to a 16O core. In that model, the ground state is viewed as
a d wave, i.e. the relative orbital momentum of the proton and the core
is assumedto be equal to l = 2. This meansthat a centrifugal barrier is
addedto the Coulomb one. The conjugatede�ects of both terms hinder the
proton for tunnelling far outside the potential well and, therefore, prevent
the formation of a halo. The excitedstate, however, is modeledby an s wave
(i.e. with l = 0). In that case,no centrifugal term is addedto the Coulomb
potential. A proton halo can thereforeappears.

Ozawa et al. [Oza94] have measuredthe interaction crosssectionof 17Ne.
They found a relatively larger value than those of its isobars 17N and 17F,
interpreting this with a Glauber-typemodel asan enhancement of the proton
radius. This might be seenas the sign of a two-proton halo.

3Mirror nuclei are isobarswith inverted numbersof protons and neutrons. In this case,
8B contains 5 protons and 3 neutrons whereas8Li has 3 protons and 5 neutrons.
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1.4 Summary

In this �rst chapter, we have tried to introducethe readerto the halo nucleus
concept. This conceptarosewhen the study of neutron-rich nuclei became
possiblethanks to the appearanceof radioactive nuclear beams.It hasbeen
found that somenuclei near the neutron drip line exhibit an anomalously
high matter radius. This is interpreted as a new nuclear feature in which
a core containing most of the nucleonsis surroundedby one or two loosely
bound neutrons that have a high probability of presenceat a large distance
from the core. Theseneutronsconstitute what is called the halo.

This structure seemsto appear in nuclei presenting low one- or two-
neutron separation energies. But a low binding energy is not a su�cien t
condition to infer the presenceof a halo structure. To claim that a nucleus
exhibits a halo pattern, it is necessaryto demonstratethe existenceof the
core plus halo con�guration of the nucleus. The currently best established
halo nuclei are 11Be, with a one-neutronhalo, and 6He, 11Li and 14Be, with
a two-neutron halo.

Many experiments have beenproposedasprobesinto the halo structure.
These include the measurement of interaction crosssectionsthat enables,
through a Glauber-type model, the deduction of the nuclear matter density.
The halo-breakupmechanism has also been investigated. A halo structure
should indeed lead to large dissociation crosssectionsin comparisonwith
other inelastic mechanisms.Furthermore, becauseof the large spatial exten-
sion of the halo, one expects a narrow momentum distribution of the core
or the halo neutronsafter a breakup reaction. Measurements of electromag-
netic moments have alsobeenusedasa tool for the study of halo structure.
If the electromagneticmoments of the studied nucleusare closeto those of
its neighbours, one can assumethat its proton density does not exhibit a
signi�cant deformation. This can be a clue for the existenceof a core inside
the nucleus.The samekind of information canbe obtainedby measuringthe
charge-changing crosssections. Other techniques, like core-breakupmecha-
nism or � decay, are usedas probesbut werenot detailed here.

Thesetechniqueswereusedto verify the halo structure of nuclei like 11Li
or 11Be. Recent experiments have been performed in order to systemati-
cally investigatethe neutron drip line. They seemto have uncovereda halo
structure in 19C and maybe in 15C.

Finally, we have conducteda brief examination of the proton halo struc-
ture. This seemsto be much less probable than the neutron one. The
Coulomb barrier indeed inhibits the development of wide proton distribu-
tion. The major proton-halo candidatesare 8B, 17F in its �rst excited state,
and more likely 17Ne.

The next chapters will examinesthe study of the Coulomb breakup of
halo nuclei. This mechanism seemsto be very likely in collisionswith heavy
targets, as shown in Sec.1.2.3. Moreover, it is one of the most useful tools
for studying properties of halo nuclei [Bla93, Nak94].
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Chapter 2

Theoretical study of the
Coulom b breakup

As seenin the previouschapter, Coulomb breakup is oneof the tools usedto
study halo nuclei. In this reaction, the halo is dissociated from the core by
interaction with a heavy target. This reactionis of particular interestbecause
of the dominant role playedby the Coulomb interaction. This indeedtendsto
reducethe uncertainties related to the modelling of the nuclear interaction.
With a good approximation, the breakupcanbe seenasa transition between
a bound state of the halo nucleustowards the continuum due to a varying
Coulomb �eld.

This chapter examinesthe main approximations usedto study theoreti-
cally the Coulomb breakup of one-neutronhalo nuclei. In the �rst section,
we give the theoretical framework within which most of the current models
lie. In the secondsection, we give a brief overview of somefully quantum
approximations used to study the Coulomb breakup of halo nuclei. In the
last sectionof this chapter, we detail the semiclassicalapproximation which
is usedin this work. This approximation leadsto the resolution of a time-
dependent Schr•odingerequation. Wealsopresent the �rst-order perturbation
which allows the calculation of an approximation of the solution of this equa-
tion. Afterwards, we describe the main numerical techniquesusedto solve
the time-dependent Schr•odinger equation.

2.1 Theoretical framew ork

We are concernedby a collision between a projectile P (the halo nucleus)
and a target T. More precisely, we consider the reactions leading to the
breakupof the former. The target is assumedto be a pointlik e, structureless
particle of charge ZT and massmT . This meansthat the excitations and
fragmentations of the target are neglected. Sincewe study the breakup of
the projectile into its coreand the halo nucleon,the projectile is modeledby
a two-body structure madeup of a pointlik e fragment f (the halo nucleon)
linkedto a pointlik estructurelesscorec (containing the other nucleons).This
implies that the reactionsincluding the nucleonsof the core(like excitations

19
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or fragmentations of the core) are neglected. The charge ZP and massmP

of the projectile are obtained from thoseof the coreand the fragment: ZP =
Zc + Z f , and mP = mc + mf . The latter expressionimplies that we neglect
the massvariation due to the binding energyof the two-body projectile.

In order to describe the relative position of the three \particles" T, c
and f in the rest frame of their centre of mass,we usethe following Jacobi
coordinates(seeFig. 2.1). The vector r denotesthe relativeposition between
the coreand the fragment:

r = R f � R c: (2.1)

The vector R P T refersto the position of the target relative to the projectile
centre of mass:

R P T = R T � R P ; (2.2)

wherethe vector R P refersto the projectile centre of masscoordinate:

R P =
mc

mP
R c +

mf

mP
R f : (2.3)

From theseexpressions,wecanobtain the coordinate of the target relative
to the core

R cT = R P T +
mf

mP
r ; (2.4)

and to the fragment

R f T = R P T �
mc

mP
r : (2.5)

Following theseassumptions,the Hamiltonian of this three-body system
expressedin the centre-of-massframe reads

H = �
�h2

2� P T
� R P T

+ H0 + VcT (R cT ) + Vf T (R f T ); (2.6)

where� P T is the reducedmassof the projectile-target system:

� P T =
mT mP

mP + mT
: (2.7)

In expression(2.6), VcT and Vf T are the potentials which simulate the
interaction of the target with the core and the fragment respectively. H 0 is
the two-body Hamiltonian modelling the projectile internal structure:

H0 = �
�h2

2�
� r + Vcf (r ); (2.8)

where� is the reducedmassof the projectile:

� =
mcmf

mc + mf
: (2.9)



2.1. THEORETICAL FRAMEW ORK 21

c

f

P

T

r

R cT

R f TR P T

Figure 2.1: Relative coordinates of the three-body model used to describe
the Coulomb breakup of halo nuclei.

The eigenstatesof this Hamiltonian correspond to the di�eren t states
of the core-fragment system. The negative energystates model the bound
statesof the halo nucleus.They aredenotedby � n;� . The number n reminds
the discretenature of the bound spectrum, while � corresponds to all other
quantum numbers. The � n;� are the solutions of

H0� n;� (r ) = En;� � n;� (r ); (2.10)

whereEn;� < 0 is minus the binding energyof the system. In the following,
the ground state of the projectile will be denotedby n = 0 and � 0, and its
energyby E0.

The positive energy states, or continuum states, simulate the unbound
system. They correspond to the scatteringof the fragment and the corewith
a kinetic energyE. They are represented by � k;� , wherek =

q
2�E =�h is the

wave number and � denotesall other quantum numbers. Thesestates are
the solutions of

H0� k;� (r ) = E� k;� (r ): (2.11)

In order to study the breakup of the projectile, we seekthe solutions of
the three-body stationary Schr•odinger equation [SLYV03, FL96]

H �( r ; R P T ) = E�( r ; R P T ); (2.12)

with the scattering boundary condition:

�( r ; R P T ) � !
RP T !1

eiK 0R P T + ::: � 0;� 0 (r ) + outgoing waves (2.13)
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The �rst term of the right hand side of (2.13) corresponds to the state
of the system prior to the collision: the projectile is assumedto be in its
ground state � 0;� 0 and its motion relative to the target is characterisedby
the wave vector K 0. The presenceof the \ : : :" reminds that this scattering
wave is not a purely plane wave but is distorted by the long-rangeCoulomb
interaction.

The secondterm represents the outgoing sphericalwaveswhich describe
the systemafter the collision. The di�eren t outgoing channelsconsideredin
the present model comprisethe elasticscatteringof both nuclei, the inelastic
scattering (i.e excitation from the ground state towards other bound states
of the projectile), and the breakup of the projectile. Therefore, transfer
reactionsare not considered.

From the generalcollision theory (seee.g. [FL96, Chapter 5]), the cross
sectionfor such processesreads

d� x;�

dpcdpf dpT
/ jTf i j2� (pc + pf + pT � pP )� (Ec + E f + ET � EP � Q);(2.14)

wherethe subscript x; � denotesthe state of the halo nucleusin the outgoing
channelcorresponding to the reactionof interest, with x standing for either n
or k. The two Dirac deltas ensurethe momentum and energyconservations
from the initial state to the �nal state. The formal expressionof the transi-
tion matrix element Tf i is provided from the Lippmann-Schwinger equation
[FL96, Chapter 5]:

Tf i = heiK x;� R P T + ::: � x;� (r )jVcT (R cT ) + Vf T (R f T )j�( r ; R P T )i : (2.15)

In this expression,eiK x;� R P T + ::: � x;� (r ) describes the three-body systemin
the outgoingchannelof interest: the projectile is in state � x;� , and its relative
motion to the target is described by the wave vector K x;� . As in (2.13), the
\ : : :" represent the distortion of the scattering wave due to the Coulomb
interaction. � is the solution of Eq. (2.12) with the boundary condition
(2.13).

In most of the cases,Eq. (2.12) cannot be solved without any further ap-
proximation. The following sectionexaminessomeof theseapproximations.

2.2 Quan tum analysis of the Coulom b
breakup

In this section,wegivea brief overviewof someapproximations usedto study
the breakup of halo nuclei quantum mechanically. As they are not used in
this work, we refer the interestedreaderto recent reviews[AN03], [SLYV03],
and [TS01a] for more information.

2.2.1 Coupled discretised contin uum channels

In the coupleddiscretisedcontinuum channels(CDCC) approximation [Kam86,
AN03, TS01a], the relative motion of the projectile components is described
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by a discretesetof squareintegrablestates� i;� . Besidesthe projectile Hamil-
tonian bound states� n;� (2.10), this set contains a discretiseddescription of
the continuum. The discretisation is performedby grouping the exact scat-
tering states � k;� (2.11) into bins. Each bin corresponds to a given set of
quantum numbers � , and to a �nite interval [ki � 1; ki ]. The squareintegrable
bin state � i;� is constructedby averagingthe scattering statesover the cor-
responding wave-number interval:

� i;� (r ) =
1

p
N

Z k i

k i � 1

w(k)� k;� (r )dk; (2.16)

wherew is a weight function usually chosenequal to unity, and

N =
Z k i

k i � 1

jw(k)j2dk (2.17)

is a normalisation factor chosenso that

h� i;� j� j ;� i = � ij � �� : (2.18)

Thesestatesare thereforeseenas discrete,normalisedeigenstatesof the
projectile Hamiltonian H0:

H0� i;� (r ) = � i;� � i;� (r ); (2.19)

where � i;� is the energyassociated to the bin (i; � ). It corresponds to En;�

(2.10) for the projectile bound states, and to the averageenergyof the bin
for the discretisedcontinuum states.

Using this bin set, the solution of (2.12) is approximated by

� CDCC (r ; R P T ) =
X

i;�

� i;� (r )� i;� (R P T ); (2.20)

where � i;� describe the relative motion of the projectile and the target. In-
troducing this approximation in Eq. (2.12) leads to the resolution of the
following set of coupledequationsfor the � i;� :

 

�
�h2

2� P T
� R P T

+ � i;� � E

!

� i;� (R P T )

+
X

j ;�

h� i;� (r )jVcT (R cT ) + Vf T (R f T )j� j ;� (r )i � j ;� (R P T ) = 0: (2.21)

Theseequationscan be solved numerically. The breakup crosssections
can therefore be approximated by replacing in (2.15) the exact three-body
wave function � by the CDCC solution (2.20). This technique has been
successfullyapplied to study the breakup of the deuteron [Kam86]. It has
also beenusedto investigate the Coulomb breakup of 11Be [NTJ96]. More
recently, this technique hasbeenapplied to the calculation of the breakupof
8B, a candidateone-protonhalo nucleus[TNT01, MTT02, Mor01].
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2.2.2 Adiabatic appro ximation

As seenin the previous section, the CDCC method leads to the numerical
resolution of a set of coupled equations. Though feasible,this technique is
rather heavy from a numericalpoint of view. In somecases,Eq. (2.12)canbe
solved analytically using the adiabatic approximation [JAT97, Tos98, AN03,
TS01a]. This approximation relieson the two following assumptions:

(i) The interaction Vf T betweenthe fragment and the target is assumed
to be negligible (i.e. Vf T ' 0).

(ii) The relative motion of the coreand the fragment is treated adiabati-
cally. That is to say that it is presumedto be much lessenergeticthan the
projectile-target motion.

The �rst assumption implies that this method may only be applied to
neutral fragments in Coulomb dominated reactions. This meansthat this
technique cannot be used to study the breakup of proton halo nuclei (like
8B), and that nuclear induced breakup cannot be investigated.

With this assumption,Eq. (2.12) can be rewritten as:
"

�
�h2

2� P T
� R P T

+ VcT (R cT ) + H0 � E

#

�( r ; R P T ) = 0: (2.22)

The boundary condition (2.13) is kept unchanged.
The secondassumptionmeansthat the relative motion of the core and

the fragment is presumedto bemuch slower than that of the projectile centre
of massand the target. It implies that the energytransferred to the projec-
tile during the collision must remain much smaller than the incident kinetic
energy of the projectile. This requires the incident kinetic energy of the
projectile to be large in comparisonwith its binding energy. This adiabatic
assumptionmeansthat we can approximate the projectile Hamiltonian H 0

by a constant. This constant is chosenequal to the projectile ground-state
energyE0 (see(2.10)) sothat the approximate solution of Eq. (2.22) satis�es
the incident boundary condition (2.13). This meansthat the full spectrum
of H0 is degeneratewith the ground state. From the above, we seethat the
adiabatic approximation is rather well suited for the study of the Coulomb
breakup of neutron-halo nuclei at high energy.

The three-body wave function obtained in the adiabatic approximation
� AD is thereforethe solution of

"

�
�h2

2� P T
� R P T

+ VcT (R cT ) + E0 � E

#

� AD (r ; R P T ) = 0: (2.23)

Sincethe core-fragment relative coordinate r acts in this equationasa mere
parameter, � AD is factorisedinto

� AD (r ; R P T ) = F (r )� (+) (R cT ); (2.24)

where� (+) is a distorted wave describingthe Coulomb scattering of the core
and the target:

"

�
�h2

2� P T
� R + VcT (R ) + E0 � E

#

� (+) (R ) = 0; (2.25)
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with the boundary condition

� (+) (R ) � !
R!1

eiK 0R + ::: + outgoing waves: (2.26)

As mentioned in Sec.2.1, the scattering wave appearing in the �rst term of
the right hand sideof this expressionis distorted by the Coulomb interaction
betweenthe coreand the target.

With condition (2.26), the solution (2.24) of Eq. (2.23) which satis�es the
incident boundary condition (2.13) reads[Tos98]

� AD (r ; R P T ) = � 0;� 0 (r )ei
m f
m P

K 0r � (+) (R cT ): (2.27)

The rather complexdependenceof this expressionin r justi�es that this
solution includes components which describe the breakup of the projectile.
However, due to the short rangeof the projectile ground-state,� AD tends to
zeroat large r , wherebreakupcomponents are signi�cants. This meansthat
this description of the projectile breakup is inaccurateat large r .

The transition matrix element Tf i appearing in the expressionof the
breakup crosssection (2.14) is therefore calculated in its post-form [FL96,
Chapter 5]. As for the CDCC method, the exact three-body wave function
� is replacedby its adiabatic approximation � AD :

Tf i = heiK f � cT R f � cT � (� )(R cT )jVcf (r )j� AD (r ; R P T )i ; (2.28)

whereR f � cT is the position of the fragment relative to the core and target
centre of mass;K f � cT is the corresponding wave vector. The short rangeof
the nuclear potential Vcf ensuresthat the calculation of the breakup tran-
sition does not require values of � AD at large r . That is to say that the
inaccuraciesmentioned above should not play any signi�cant role in this
calculation.

This method has been applied to the study of the Coulomb breakup
of the deuteron [Tos98, TRJ98]. The Coulomb breakup of 11Be and 19C,
two one-neutronhalo nuclei, have alsobeenstudied in the framework of the
adiabatic approximation [BTT98a]. In Ref. [BTT98b], the Coulomb breakup
of the two-neutron halo nucleus 6He has been investigated with the same
technique.

2.3 Semiclassical appro ximation and the time-
dependent Schr•odinger equation

In the previoussection,we introducedsomemethods that are usedto study
the Coulomb breakup of halo nuclei. In these methods, the three-body
Schr•odinger equation is solved fully quantum mechanically. In this section,
we present the framework of the semiclassicalapproximation which is used
in this work.
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2.3.1 Time-dep endent Schr•odinger equation

In the semiclassicalapproximation [AW75], the relative motion of the pro-
jectile and the target is treated classically. This meansthat the projectile
is assumedto follow a classicaltra jectory. This tra jectory is computedcon-
sideringa global projectile-target interaction VP T . Sincewe are dealingwith
heavy targets, this interaction is usually seenas the Coulomb interaction
betweenthe projectile and the target. However, a nuclear term may be in-
cluded as well. The quantum variable R P T corresponding to the position
vector of the target relative to the projectile centre of massis thus replaced
by the classicaltime-dependent variable R (t) describingthe tra jectory.

Along this tra jectory, the projectile is a�ected by the varying Coulomb
and nuclear�elds of the target. The halo nucleusis thereforeseenasevolving
in a time-dependent potential simulating its interaction with the target. This
evolution is treated quantum mechanically. That is to say that the halo
nucleus is represented by a wave function 	 which is the solution of the
following time-dependent Schr•odinger equation

i �h
@	
@t

(r ; t) = H (t)	( r ; t); (2.29)

wherethe time-dependent Hamiltonian H reads

H (t) = H0 + V(t); (2.30)

wherethe spatial dependenceis understood. H0 is the Hamiltonian modelling
the projectile internal structure (2.8), and V is a time-dependent potential
simulating the projectile-target interaction. This potential consistsof the
residual interaction between the projectile fragments and the target. It is
composedof the sum of VcT and Vf T (2.6) to which a global projectile-target
interaction VP T is deduced.The time dependenceof V is due to the replace-
ment of the quantum variable R P T by its classicalapproximation R (t) which
dependson time. Therefore,V reads

V(t) = VcT (R cT (t)) + Vf T (R f T (t)) � VP T (R (t)) ; (2.31)

where the time-dependent vectors R cT (t) and R f T (t) are obtained with
Eqs.(2.4)and (2.5) respectively, using R (t) instead of R P T .

This approximation is valid under the following two conditions [AW75]:
(i) The wavepacket representing the quantum mechanical relativemotion

of the projectile and the target is su�cien tly narrow.
(ii) The energyspreadof that packet is small in comparisonwith its mean

energy.
Condition (i) merely indicates that the wave packet must be su�cien tly

localisedso that it can be approximated by a classicalpoint. This will be
ful�lled if the radial spread� RP T is much smaller than the characteristic di-
mensionof the system. This dimensioncan be approximated by the classical
impact parameterb characterisingthe classicaltra jectory. This reads

� RP T � b: (2.32)
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Condition (ii) corresponds to the fact that the incident beam must be
monochromatic so as to allow a classicaldescription of the relative motion.
This can be expressedas

� PP T

PP T
� 1; (2.33)

wherePP T = � P T v is the momentum of the relativemotion with initial group
velocity v, and � PP T its spread. Assuming that the latter is given by the
Heisenberg uncertainty principle [CDL73, Chapter I]:

� PP T � �h(� RP T )� 1; (2.34)

we obtain the secondcondition

�h
� P T v� RP T

� 1: (2.35)

Combining (2.32) and (2.35) leadsto the condition

b� P T v
�h

� 1: (2.36)

In our caseb > 10 fm, � P T � 10 GeV/ c2 and v � 0:3c where c is the
speedof light (seeSecs.5.2.3,6.2.3and 7.2.1). The condition is then ful�lled
( b� P T v

�h � 150).
Furthermore, sincethe relative motion of the projectile and the target is

treated classically, the energytransfer betweenthis motion and the intrinsic
motion in the projectile is not taken into account. This mean that for the
semiclassicalapproximation to be valid, this energytransfer must be negli-
gible. In other words, the excitation energyof the projectile must be small
compared to the relative motion energy. Since the excitation energieswe
considerin our calculations do not exceed5 MeV, and that the kinetic en-
ergy of the projectile we consideris about 700MeV, this condition is ful�lled
too.

Eq. (2.29) is solved with the initial condition that the projectile is in its
ground state prior to the collision. This reads

	( r ; t ! �1 ) = � 0;� 0 (r ): (2.37)

For each tra jectory, the breakup probability per energyunit can be com-
puted from the calculation output 	( r ; t ! + 1 ):

dPbu

dE
(E; b) /

X

�
jh� k;� (r )j	( r ; t ! 1 )ij 2; (2.38)

where � k;� are the continuum states de�ned in (2.11) The breakup cross
sectionis obtained by summingthe probabilities computedfor all the tra jec-
tories:

d� bu

dE
(E; b) = 2�

Z dP
dE

(E; b)bdb: (2.39)
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2.3.2 First-order perturbation

When the time-dependent potential V is small, the solution of (2.29) can
be approximated using the �rst-order perturbation theory (seee.g. [CDL73,
Chapter XI I I]). This is the casewhen, for example,the evolution of the wave
function is computed for distant tra jectories (i.e. corresponding to large
impact parameters).

In the perturbation theory, the time-dependent wave function 	 is devel-
oped upon the basisof H0 eigenstates.With the initial condition (2.37), the
coe�cien ts of this development on the continuum statesare

h� k;� (r )j	( r ; t)i =
e� iE t=�h

i �h

Z t

�1
ei! t0

h� k;� (r )jV(t0)j� 0;� 0 (r )i dt0; (2.40)

where! = (E � E0)=�h. In this expression,E is the kinetic energybetweenthe
core and the fragment of the projectile after breakup, and E0 is the energy
of the ground state � 0;� 0 .

From (2.40), we can obtain a �rst-order approximation of the breakup
probability (2.38):

dPbu

dE
(E; b) /

X

�
j
Z 1

�1
ei! t0

h� k;� (r )jV(t0)j� 0;� 0 (r )i dt0j2: (2.41)

Wewill seein Sec.3.4.3that this expressioncanbecalculatedanalytically
under somegeneralconditions.

2.3.3 Exact resolution of the time-dep endent
Schr•odinger equation

If the potential V is not small enough, the �rst-order perturbation theory
presented in the previoussection is no longer valid, and higher ordersmust
be taken into account. This can be doneby solving Eq. (2.29) \exactly". By
exactly, we mean numerically solving the equation without any assumption
about the magnitude of V.

Recently, several techniques have been developed to solve the three-
dimensional time-dependent Schr•odinger equation (2.29) [KYS94, EBB95,
TS01b, LSC99, Mel97]. In this section, we present those methods, their
main advantagesand drawbacks. We will group them following the way of
representing the wave function, which correspondsto the main di�erence be-
tweenthem. For simplicity, the spin dependenceof the problem will not be
consideredhere.

Partial-w ave expansion

This method is usedby many authors to study the Coulomb breakupof halo
nuclei. For example,Kido, Yabana,and Suzuki usedit to study the breakup
of 11Be on a 208Pb target [KYS94, KYS96]. Esbensen,Bertsch and Bertulani
studied the Coulomb breakup of 11Li by modelling this two-neutron halo
nucleusas a dineutron looselybound to a 9Li core [EBB95]. More recently,
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Typel and Shyam used this technique to analysethe Coulomb breakup of
11Be and 19C [TS01b].

The main ideaof this method is to considera partial wave decomposition
of the time-dependent wave function 	:

	( r ; t) = r � 1
X

lm

ulm (r; t)Y m
l (
) ; (2.42)

wherer � (r; 
) is expressedin sphericalcoordinate. The angular functions
Y m

l are the usual sphericalharmonics[CDL73, Appendix A-VI]. The advan-
tage of this expansionis that the projectile Hamiltonian H 0 is diagonal in
the sphericalharmonic basis:

hlmjH0jl0m0i =

(

�
�h2

2�

"
@2

@r 2
�

l (l + 1)
r 2

#

+ V l
cf (r )

)

� l l0� mm 0

= H l
0(r )� l l0� mm 0 (2.43)

Substituting (2.42) into (2.29) leadsto the following set of coupledequa-
tions

i �h
@ulm

@t
(r; t) =

X

l0m0

hlm;l 0m0(r; t)ul0m0(r; t); (2.44)

where

hlm;l 0m0(r; t) = hlmjH0 + V(t)jl0m0i

= H l
0(r )� l l0� mm 0 +

Z

4�
Y m�

l (
) V(t)Y m0

l0 (
) d
 : (2.45)

In order to compute the time evolution of the wave function, the time
variable is discretisedusing a constant time step � t. The wave function at
time t + � t is then computedfrom that at time t usingthe evolution operator
U (seeSec.4.3.1and Ref. [CDL73, Appendix F-I I I] for details):

	( r ; t + � t) = U(t + � t; t)	( r ; t) (2.46)

The major di�erence betweenthe algorithms detailed in Refs. [KYS94],
[EBB95], and [TS01b] lies in the choiceof the approximation of the operator
U. Kido et al. , as well as Esbensenet al. , considera factorisation of this
operator in which both terms H0 and V of the time-dependent Hamiltonian
are split:

U(t + � t; t) ' exp
�

� i
� t
�h

H0

�

exp
�

� i
� t
�h

V(t)
�

: (2.47)

They divide the time step into two substeps. First, the e�ect of the time-
dependent potential is taken into account. For this, the exponential of V is
approximated by its Taylor expansionup to the linear term in � t:

ulm (r; t + � t=2) = ulm (r; t) � i
� t
�h

X

l0m0

hlmjV(t)jl0m0i ul0m0(r; t): (2.48)
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Second,the e�ect of H0 is considered. Since this Hamiltonian is diagonal
in the spherical harmonic basis, the evolution of each radial wave function
can be computed separately. Using the (1,1) Pad�e approximation of the
exponential of this operator [MVL78] leadsto

ulm (r; t + � t) =
�

1 + i
� t
2

H l
0(r )

� � 1 �

1 � i
� t
2

H l
0(r )

�

ulm (r; t + � t=2): (2.49)

Typel and Shyam, however, do not split the evolution operator. They use
the following approximation

U(t + � t; t) '
�

1 + i
� t
2�h

h
� � 1 �

1 � i
� t
2�h

h
�

; (2.50)

where h stands for the matrix whoseelements are the hlm;l 0m0 de�ned by
(2.45). This correspondsto the (1,1) Pad�e approximation of the exponential
of the time-dependent Hamiltonian H (2.30) exp� i � t=�hH (t).

In both approaches,the radial variable is discretisedover a mesh,and the
di�eren tial operator appearing in H0 (seeEq. (2.43)) is approximated by a
�nite-di�erence technique.

The evolution of the wave function is thus performed step by step by
applying the approximation of the evolution operator successively to the
wave function. The calculation starts at time t in from the projectile ground
state. This initial time has to be chosensu�cien tly negative so that the
perturbative potential V can be neglected. The calculation stops at tout

when the e�ect of the target on the projectile becomesnegligibleagain.
This algorithm presents the main advantage that the decomposition in

partial wavesis particularly well suited to representing the projectile Hamil-
tonian H0. As mentioned above, H0 is indeeddiagonal in this angular basis.
Moreover, ascanbenotedfrom expression(2.43), the core-fragment potential
canbe function of the orbital momentum l. This leadsto a fair descriptionof
the projectile sinceit usually enablesoneto reproduceaccurately the bound
spectrum of the halo nucleus.

The major drawback of this method arisesfrom the multip oleexpansionof
the time-dependent potential V (seeEq. (2.45)). This requiresan analytical
treatment of the potential prior to the evolution calculation. Moreover, it
leadsto the couplingof the radial wave functions (seeEqs.(2.48)and (2.50)),
which seriouslycomplicatesthe evolution calculation.

Cartesian mesh

Another non-perturbative technique for solving the time-dependent Schr•o-
dingerequationhasbeenproposedby Lacroix, Scarpaci,andChomaz[LSC99].
In [FSL02], this method hasbeenusedby Fallot et al. to study the Coulomb
and nuclear induced dissociation of 11Be. It should be noted that the time-
dependent equation they consider is slightly di�eren t from Eq. (2.29). In
their approach, the classicaltra jectory is usedto model the relative motion
of the core c and the target T, whereasit corresponds to the motion of the
projectile centre of massrelative to the target in the approximation described
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in Sec.2.3.1. This meansthat they considerthe evolution of the halo-neutron
wave-function instead of that representing the projectile internal structure.
This leadsto the following single-particleSchr•odinger equation

i �h
@'
@t

(r ; t) =

"

�
�h2

2mN
� + Vcf (r � R c(t)) + Vf T (r � R T (t))

#

' (r ; t);(2.51)

where' is the halo-neutronwave-function, and mN the massof the nucleon.
r is the vector coordinate of the neutron, while R c and R T correspond to
the positions of the core and the target respectively. These are obtained
consideringa classicalCoulomb tra jectory for the coreand target motions.

The main idea of this method is to discretisethe wave function over a
three-dimensionalCartesian mesh. The evolution calculation is performed,
as in the other methods, by discretising the time variable and using an ap-
proximation of the time-evolution operator. This operator is split so as to
separatethe kinetic energyoperator from the time-dependent potentials:

U(t + � t; t) ' exp
�

� i
� t

4�hm
p2

�

� exp
�

� i
� t
�h

[Vcf (r � R c(t)) + Vf T (r � R T (t))]
�

� exp
�

� i
� t

4�hm
p2

�

(2.52)

wherep = � i �hr is the momentum operator.
The advantage of this decomposition is that the potential factor of the

evolution operator is diagonal when calculatedon the Cartesian mesh. The
momentum-operator factor is diagonal if expressedin the momentum space.
The time evolution can thereforebe performedquite easily if each factor of
(2.52) is expressedin the right space. Lacroix et al. proposeto divide the
time step � t into three intermediate steps. At each of these substeps,a
di�eren t part of the evolution operator is applied to the wave function. This
meansthat a spacechangeis neededbetweentwo successive substeps.This
spacechangeis performedwith a fast Fourier transform.

As in the method described in the previous section, the time evolu-
tion starts with the condition that at time t in ! �1 , the projectile is in
its ground state. The calculation stops at su�cien tly large tout , when the
projectile-target interaction no longer modi�es the wave function.

The major advantageof this method lies in the fact that each factor of the
evolution operator can be treated in the spacein which it is diagonal. More-
over the expressionsof the potentials appearingin (2.52) areeasilyevaluated
and do not require any multip ole expansion.However, the spacechange,al-
though facilitating the evolution operator treatment, is time-consuming.

The major drawback of this technique is the fact that no orbital-momen-
tum dependenceof the core-fragment potential can be taken into account.
This leads to a rather poor description of the projectile internal structure
sinceonly oneof its bound statescan usually be reproduced.
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The present metho d

The method wedevelopin this work to solve the time-dependent Schr•odinger
equation is basedupon the technique introduced by Melezhik for atomic-
physics problems [Mel97]. This technique was extendedto nuclear physics
and applied �rstly to study the Coulomb breakup of 11Be [MB99]. As for
the other two methods, the time variable is discretised using a constant
time step � t, and the evolution of the wave function is calculated using an
approximation of the evolution operator U.

The main idea of this technique is to expandthe projectile wave function
upon a three-dimensionalspherical mesh. This leads to a diagonal repre-
sentation of the time-dependent potential V (2.31). As the elements of this
matrix merely consistsof the values of the potential at mesh points, the
treatment of V is both accurate and straightforward. Moreover, a simple
basischangeenablesus to obtain the samerepresentation of the projectile
Hamiltonian H0 (2.8) as in the partial-wave expansionmethod.

This meansthat this technique combines the advantagesof the two pre-
cedingmethods: a fair modelling of the halonucleusandan easilycomputable
representation of the projectile-target interaction. A splitting of the evolu-
tion operator U into factors depending on either H0 and V enablesus to
develop a simple time-evolution algorithm.

This method as well as its practical implementation will be described in
the two following chapters.



Chapter 3

Mo del description

In the previouschapter, we introducedthe semiclassicalapproximation which
constitutes the main theoretical background of this study. In this approach,
the breakup of halo nuclei is investigatedthrough solving a time-dependent
Schr•odinger equation (2.29). The corresponding Hamiltonian H consistsof
two terms (2.30):

H (t) = H0 + V(t); (3.1)

wherethe spatial dependenceis understood. The �rst term H0 corresponds
to the internal Hamiltonian of the halo nucleus(2.8) while the secondterm V
is a time-dependent potential modelling its interaction with the target (2.31).

In this chapter, we describe accurately this time-dependent Hamiltonian.
The �rst sectionexaminesthe model of halo nucleuswe consider. It consists
mainly of the descriptionof the potential weusein the projectile Hamiltonian
H0. In the secondsection,we explain how the projectile-target interaction is
represented. The third part of this chapter comprisesthe di�eren t choicesof
classicaltra jectories in our study. In the fourth section,we detail the calcu-
lation of the crosssectionsin this model. In the last section,we analysethe
symmetry of the time-dependent Hamiltonian and deducefrom that analysis
an important symmetry property of the wave function.

3.1 Mo del of halo nuclei

3.1.1 Tw o-b ody structure

We have seenin Chapter 1 that halo nuclei exhibit a strong cluster struc-
ture. Therefore,they canbeviewedasa heavy coresurroundedby oneor two
looselybound neutrons. This study focuseson one-neutronand one-proton
halo nuclei. Their relatively simple structure is described by two-body sys-
tems: a pointlik e structurelesscorec linked to a pointlik e fragment particle
f (i.e. the halo nucleon). In this work, the massm of the nuclei are assumed
to be proportional to their massnumber A:

m = AmN ; (3.2)

33
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wheremN , the massof onenucleon,is given by

�h2

2mN
= 20:736MeV� 1fm� 2: (3.3)

The internal structure of such a nucleus is therefore described by the
Hamiltonian H0 (2.8)

H0 = �
�h2

2�
� r + Vcf (r ); (3.4)

where� is the reducedmassof the two-body structure, and r is the relative
coordinate of the fragment to the core. The core-fragment interaction is
modelled by the real local potential Vcf . It is chosenso as to reproduce the
bound spectrum of the nucleusand sometimessomeof its unbound resonant
states.

In order to obtain an accurate description of the projectile, the Pauli
principle shouldbe taken into account (seee.g. Ref. [CDL73, Chapter XIV]).
According to this principle, the occupied orbitals of the core are forbidden
to the fragment nucleon. This can be doneonly by using a fully microscopic
description of the nucleus[Des97]. This description leadsto a non-local po-
tential modelling of the core-fragment interaction, which would be di�cult
to implement in the present state of our model. However, it hasbeenshown
in Ref. [BFW77] that cluster modelsusingdeeplocal potentials cansimulate
someof the e�ects of the Pauli principle. In addition to the physical bound
states of the system, these potentials also include deep unphysical bound
states. Their presenceallows the wave function of the physical states com-
puted with that local potential to resemble thoseobtained in a microscopic
calculation. Theseunphysical statesareusually seenasthe occupiedorbitals
of the core. The potential Vcf must therefore be chosenso that it includes
as many unphysical bound statesas there are occupiedorbitals in the core.

In our model, the core-fragment potential is composedof a central term
to which a spin-orbit coupling term is added

Vcf (r ) = V0(r ) +
1
�h2 L � I VLI (r ): (3.5)

In this expression,L is the relative orbital momentum of the fragment and
the core, and I is the fragment spin. In this study, the spin of the core is
neglectedwhile the spin of the fragment I is assumedto be �xed.

The central term reads

V0(r ) = � Vl f (r; R0; a) (3.6)

with the usual Woods-Saxonform factor [Kra88, Chapter 5]

f (r; R0; a) =
�

1 + exp
� r � R0

a

�� � 1

: (3.7)

This expressionis chosenso as to roughly re
ect the matter density of the
core. From this viewpoint, R0 corresponds to the radius of the core (R0 '
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1:2A1=3
c fm), while a is the di�usenessof its distribution (a ' 0:6 fm). The

spin-orbit coupling term has the Thomas form [Law80, Chapter 1]

VLI (r ) = VLS
1
r

d
dr

f (r; R0; a): (3.8)

When the fragment is charged, e.g. in proton-halo nuclei, a Coulomb
potential is added to the nuclear interaction. It is chosenas the potential
VC due to a uniformly chargedsphereof radius RC (the core) acting upon a
pointlik e chargedparticle (the fragment) (seee.g. [Hod78, Chapter 3]):

VC (r; Zc; Z f ; RC ) =

8
><

>:

1
2

ZcZ f e2

4� � 0RC

�

3 � r 2

R2
C

�

r < RC

ZcZ f e2

4� � 0 r r � RC

(3.9)

Corresponding to the radius of the core,RC is logically chosenequal to the
radius R0 appearing in the expressionof the Woods-Saxonform factor (3.6).

The parametersof the potentials arechosensoasto reproducethe bound
spectrum of the halo nucleus and, in some cases,some resonances. The
parametersR0 and a of the Woods-Saxonform factor (3.7) are set ab initio
to usual values(seeabove). Therefore,the typical energiesof the systemare
reproduced by adjusting the depths of the central and spin-orbit coupling
terms. This usually introducesan l-dependencein V0. Sincethe number of
energiesto which the potential parametersare �tted doesnot exceedtwo or
three, this dependenceis not very strong. We usually considera central term
with two di�eren t depths, one for the s-waves and one for all other partial
waves.

The potential form factor we have just described is not the most general
allowed by our model. Other form factors than the Woods-Saxon(3.7) could
be used,and a moregeneraldependenceon the angular momentum could be
taken into account. This will be illustrated in Sec.3.1.3.

3.1.2 Hamiltonian eigenstates

This sectionexaminesthe eigenstatesof the two-body Hamiltonian described
in the previous section. In other words, we detail the wave functions �
solution of

H0� (r ) = E � (r ): (3.10)

This eigenproblem leadsto two kinds of solution: the negative-energystates
(with E < 0) and the positive-energystates (with E > 0). The former
correspond to the bound states of the systemwith binding energy jE j. As
mentioned in the previous section, they describe either the physical bound
statesof the systemor the Pauli forbidden states. The positive-energystates
describe the unbound system. They correspond to the scattering of the
fragment and the corewith a relative kinetic energyE.

From its generalstructure described in the previoussection,we seethat
the two-body Hamiltonian H0 (3.4) is invariant under rotation. This means
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that its eigenstatescan be expandedinto partial waves [GP90, Chapter 6].
Their wave functions can therefore be expressedas the product of a radial
part and a spin-angularpart:

� l j m (r ) = r � 1ul j (r )h
 jl j mi ; (3.11)

wherel, j , and m arequantum numbersassociated to the orbital momentum
and the total angular momentum (seebelow), and 
 = (� ; ' ) is the solid
anglede�ning the direction of r .

The spin-angularpart of the wave function appearing in this expression
corresponds to the eigenvector jl j mi of operators L 2, J 2 and Jz (with J =
L + I denoting the total angular momentum):

L 2jl j mi = �h2l (l + 1)jl j mi ; (3.12)

J 2jl j mi = �h2j (j + 1)jl j mi ; (3.13)

and

Jzjl j mi = �hmjl j mi : (3.14)

It is alsoan eigenstateof the operator I 2 related to the projectile spin:

I 2jl j mi = �h2I (I + 1)jl j mi : (3.15)

SinceI is assumedto be �xed, this quantum number is understood in our
notations.

This part of the wave function canbeexpressedasa linear combination of
spin eigenvectors jI mI i and orbital-momentum eigenfunctionsY m l

l [CDL73,
Appendix A-VI]:

h
 jl j mi =
X

m I m l

(l I mlmI jj m)Y m l
l (
) jI mI i ; (3.16)

where(l I mlmI jj m) are the Clebsch-Gordan coe�cien ts1.
From the above, weseethat the radial part ul j of the wave function (3.11)

is the solution of the following eigenvalue equation

�
�h2

2�
d2

dr2
ul j (r ) +

(
�h2

2�
l(l + 1)

r 2
+ V0(r )

+
1
2

[j (j + 1) � l(l + 1) � I (I + 1)]VLI (r )
�

ul j (r ) = Eul j (r ): (3.17)

Sincethe bound spectrum is discreet, the solutions of (3.17) can be dis-
tinguished by an integer. We choosethis integer equal to the number n of
nodesexhibited by the radial wave function. Subsequently, thesestatesand

1In many textb ooks (seee.g. [Edm57]), the Clebsch-Gordan coe�cien ts are denotedby
(l I ml mI jl I j m). For simplicit y we adopt the above mentioned notation usedin [CDL73].
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their energieswill be referred to by � nl j m and Enl j respectively. According
to (3.11), their wave functions read

� nl j m (r ) = r � 1unl j (r )h
 jl j mi : (3.18)

Thesestatesare normalisedto unity:

k� nl j mk2 =
Z 1

0
[unl j (r )]2dr

= 1: (3.19)

In the following, the physical ground state will be denotedby � n0 l0 j 0m0 , and
its energyby E0.

The solutions corresponding to the continuum are distinguished by the
wave number k =

q
2�E =�h2. In the following, thesescattering stateswill be

referredto by � kl j m . Their wave functions read

� kl j m (r ) = r � 1ukl j (r )h
 jl j mi : (3.20)

Their radial part is normalisedin such a way that

ukl j (r ) � !
r !1

s
2
�

[cos� kl j Fl (E; r ) + sin� kl j Gl (E; r )] (3.21)

whereFl and Gl are the regular and irregular Coulomb functions [AS70, pp
597-544]and � kl j is the phaseshift [Joa75, Sec.4.3].

3.1.3 Supersymmetric elimination of forbidden bound
states

We have seenin previoussectionsthat our modeling of halo nuclei includes
nonphysical bound states so as to simulate the Pauli principle. It seems
that the presenceof such forbidden statesdoesnot signi�cantly modify the
properties of the physical bound states of one- and two-neutron halo nuclei
(seeRefs. [RVB96] and [HBS99] respectively). It would be interesting to
seewhether or not thesenonphysical bound states play a role in evolution
calculations.

Weneedthereforea techniquewhich enablesusto removethoseforbidden
states. As shown by Baye in Refs. [Bay87a] and [Bay87b], this can be done
by performing a pair of supersymmetric transformations of the potential.
The resulting potential exhibits the samebound spectrum as the initial one
but for the removed state. It is alsophaseequivalent as it leadsto the same
phaseshifts.

In this section,wegivea brief overviewof this theory, and refer the reader
to Refs. [Suk85], [Bay87b], and [Bay87a] for details.

In order to introducethesesupersymmetrictransformations,let usrewrite
the core-fragment potential (3.5) in a more generalform which emphasizes
its dependenceon the orbital and total angular momenta l and j :

Vcf (r ) =
X

l j

V l j
0 (r )

X

m
jl j mihl j mj; (3.22)
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where the jl j mi s are the total angular momentum eigenstatesde�ned in
(3.16).

Let us also denoteby � 0
nl j m the bound states of H0 of energyEnl j . The

eigenstatesof positive energyE = �h2k2=2� are then denotedby � 0
kl j m . From

(3.11), thesewave functions read

� 0
xl j m (r ) = r � 1u0

xl j (r )h
 jl j mi ; (3.23)

wherex standsfor either n or k.
Sukumar has shown [Suk85] that the lowest bound state of energyE0l j

and radial wave function u0
0l j could be removed without a�ecting the rest

of the spectrum. This is performed by modifying the potential V l j
0 of the

corresponding partial wave l j . However, the resulting potential leads to
di�eren t phase shifts than those of the initial one. This means that the
scattering properties of both potentials di�er.

In order to derive a phase-equivalent potential in which the lowest bound
state has beenremoved, Baye has proposed[Bay87a] to apply to the super-
symmetric potential of Sukumar a secondtransformation which restoresthe
original phase-shifts. This pair of supersymmetric transformations leadsto
the new potential [Bay87b]

V l j
2 (r ) = V l j

0 (r ) �
�h2

�
d2

dr2
ln

Z r

0
[u0

0l j (r
0)]2dr0: (3.24)

This potential leadsto the samebound spectrum as that obtained with
potential V l j

0 but for the lowest energyE0l j which hasbeenremoved. It also
exhibits the samephaseshifts as the initial potential. Theseproperties can
be understood from the radial wave functions of the eigenstatesobtained
after transformation (3.24). We can easily verify that they read [Bay87a]

u2
xl j (r ) = u0

xl j (r ) � u0
0l j (r )

Rr
0 u0

0l j (r
0)u0

xl j (r
0)dr0

Rr
0 [u0

0l j (r 0)]2dr0
: (3.25)

Here again x stands either for n in the caseof bound states or for k in the
caseof scattering states.

Considering n = 0 in Eq. (3.25), indicates that the ground state has
indeedbeenremoved for this leadsto u2

0l j = 0. Moreover, expression(3.25)
shows that both wave functions u2

kl j and u0
kl j exhibit the sameasymptotic

behaviour. Their di�erence indeedvanishesfor r ! 1 as u0
0l j . This means

that the supersymmetricpartner V l j
2 (3.24)of the initial potential V l j

0 leadsto
the samephaseshifts, and thereforeto the sameelastic-scatteringproperties.

Accordingly, applying the supersymmetrictransformation (3.24) for each
Pauli-forbidden state of the core-fragment potential (3.22) enablesus to de-
rive a new potential. This resulting potential exhibits the same physical
properties as the initial one(samephysical bound spectrum, and samescat-
tering properties), but doesnot include the unphysical bound states.

Thesesupersymmetric transformations (3.24) have to be performed for
each partial wave l j wherea bound state has to be removed. Therefore,the
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�nal potential exhibits a strong angular momentum dependence,even if this
was not the casefor the initial one. This can be performed only in models
which, like ours, allow explicit dependenceon l and j of the core-fragment
potential.

It should also be noted that we usually do not know the analytical ex-
pressionof the radial wave-function of the forbidden states to be removed.
Therefore, the calculation of the supersymmetric partner (3.24) of the ini-
tial potential has to be performednumerically. As, in our method, only the
valuesof the potential at meshpoints are needed(seeChapter 4), this does
not really matter.

3.2 Pro jectile-target in teraction

In the semiclassicalapproximation, the relative motion of the projectile and
the target is treated classically (seeSec.2.3). Therefore the target can be
seenas following a classical tra jectory in the projectile rest frame. The
in
uence of the target onto the two-body projectile is then modeled by a
time-dependent potential (2.31)

V(t) = VcT (RcT (t)) + Vf T (Rf T (t)) �
ZP ZT e2

4� � 0R(t)
(3.26)

where R, RcT , and Rf T are the relative distancesbetween the target and
the projectile centre of mass (2.3), the core (2.4) and the fragment (2.5)
respectively. This potential merely consistsof the sum of the interactions
between the target and the projectile constituents. From that sum, the
interaction chosen to derive the classical relative motion of the projectile
and the target is subtracted (i.e. VP T in Eq. (2.31)). As we consideronly
heavy targets (i.e. with largeZT ), we approximate this interaction by a pure
Coulomb potential. In this case,the target is therefore assumedto follow
a Rutherford tra jectory [AW75]. It should be noted that nuclear e�ects
could be taken into account. For this we should compute another classical
tra jectory using an interaction which includesa nuclear term [MS00].

VcT and Vf T are central potentials that simulate both Coulomb and nu-
clear interactions. In previousstudies[KYS96, MB99, MB01], the Coulomb
interaction is modeled by a point Coulomb potential while the nuclear in-
teraction is simulated by a simple impact parameter cuto�. This is known
as the black-diskapproximation. It meansthat the interaction betweenthe
target and the projectile coreand fragment is assumedto be purely Coulom-
bic above a certain impact parameterbmin . Below that limit, the interaction
is assumedto be dominated by nuclear forcesthat lead to strong inelastic
reactions. From this viewpoint, only the tra jectorieswith impact parameters
above the cuto� are taken into account to computethe breakupcrosssection.

One of the advantagesof the present model is that the projectile-target
interaction can be easilydescribed in a more realistic manner. It indeeden-
ablesus to make useof optical potentials in the time-dependent interaction
V (3.26). Thesephenomenologicalpotentials are usually usedto model the
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elastic scattering of nuclei (seeRefs. [Kra88, Sec.11.9] and [Joa75, Chap-
ter 20]).

They arecomposedof the sumof real and imaginary nuclearpotentials to
which a Coulomb term is added. In a simple analysisof this theory, the real
term is viewed as responsible for the elastic scattering while the imaginary
part simulates the non-elasticprocesses.Becausetheseprocessessomehow
\absorb" the 
ux of probability from the elasticchannel, the imaginary term
is alsoknown as the absorption term.

The analytical expressionof such potentials is obtained by selectingthe
parametersof generalform factorssoasto �t the calculatedscatteringcross-
sections onto experimental data. A compilation of optical potentials for
di�eren t projectiles and targets can be found in Ref. [PP76]. The potentials
used in this study are extracted from Refs. [BG69], [Bon85], and [Coo82].
They are de�ned as follows:

VxT (r ) = VC (r; Zx ; ZT ; RC ) � V f (r; RR ; aR)

� i

"

Wf (r; RI ; aI ) � WD
d
dr

f (r; RD ; aD )

#

; (3.27)

wherex stands for either c (core) or f (fragment). In this expression,VC is
the point-sphere Coulomb potential de�ned by (3.9), and f is the Woods-
Saxonform factor (3.7).

It should be noted that someof thesepotentials also include a real spin-
orbit coupling term. Sinceit cannot be taken into account in our model, this
term is systematically neglectedin our calculations.

3.3 Classical tra jectory

This sectionexaminesthe description of the tra jectories we considerin our
semiclassicalmodel. We have seenin Sec.3.2 that the relative motion of the
projectile and the target is assumedto be due to the Coulomb interaction
betweenthem. Therefore,the tra jectoriescorrespond to hyperbolic Coulomb
orbits. In �rst approximation, however, they can be approached by straight
lines.

Since the Coulomb interaction between the projectile and the target is
a central force, the classicaltra jectory followed by the target in the projec-
tile rest frame lies in a plane [Gol80, Chapter 3]. In order to describe this
tra jectory, we consider a coordinate system in which the tra jectory plane
corresponds to the xz-plane (seeFig. 3.1). The x-axis is chosenalong the
apex line towards the target, and the direction of the z-axis such that the
z-component of the target velocity is positive. The y-axis is thereforechosen
perpendicular to the plane. The origin of the coordinate is located on the
centre of massof the projectile nucleus.

In this referencesystem,the relative coordinate of the target to the pro-
jectile centre of massR can be described using the dimensionlessparameter
w de�ned by [AW75, Chapter I I]:

t =
a
v

(� sinhw + w); (3.28)
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z
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J
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�= 2

b

R (t)

v
T

Figure 3.1: Coordinate systemusedto describe the target tra jectory in the
projectile rest frame.

where v is the initial relative velocity, and t is the time. Parameter a cor-
responds to half the distanceof closestapproach in a head-oncollision (i.e.
with impact parameterb= 0):

a =
ZP ZT e2

4� � 0� P T v2
; (3.29)

and � is the eccentricit y

� =

s

1 +
b2

a2
: (3.30)

The eccentricit y is related to the scattering angle � through

sin
�
2

=
1
�
: (3.31)

The components of R then read
8
><

>:

xR = a(coshw + � )
yR = 0
zR = a

p
� 2 � 1sinhw

(3.32)

This parametrisation is chosenso that t = 0 corresponds to the time of
closestapproach.
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As will be seenlater, our time-evolution algorithm includesthe following
operator: exp(i � tH 0=2), where H0 is the projectile Hamiltonian (3.4) and
� t is the time step (seeSec.4.3.2). This operator doesnot depend on time.
Therefore, it can be evaluated only onceprior to the evolution calculation.
This is of great interest since the computation of this operator requires a
great number of operations (seeSec.4.3.4). However, this implies that the
time step must be constant. This meansthat the parameter w cannot be
chosenas the evolution variable; thus we cannot considerconstant stepsin
w. Therefore,relation (3.28) hasto be inverted to obtain R asa function of
t. Becauseit cannot be performedanalytically, this is performednumerically
using the Newton-Raphsonmethod [PFTV86, Sec.9.4].

Sincewe are consideringhigh energycollisions,the projectile-target scat-
tering angle is closeto zero2. This meansthat the tra jectory can be rather
well approximated by a straight line. In this casethe parametrisationis much
simpler:

R (t) = b + vt; (3.33)

whereb is the impact parametervector and v is the initial relative velocity.
Choosingb along the x-axis and v along the z-axis leadsto

8
><

>:

xR = b
yR = 0
zR = vt

(3.34)

3.4 Cross sections

With the details given in the precedingsections,the time-dependent Schr•o-
dinger equation is solved with the initial condition that at time t in ! �1
the systemis in its physical ground state,

	 (m0 )(r ; t in ) = � n0 l0 j 0m0 (r ): (3.35)

Sincem0 is not known, the equationhasto be solved for all the valuesit can
take.

In order to obtain information about the breakup, we need to extract
crosssectionsfrom the output of our calculation, that is to say from the
wave function at �nal time tout ! 1 .

This section looks at the calculation of these crosssections. The �rst
values we consider are the breakup and inelastic crosssections. We then
detail the computation of the parallel momentum distribution.

3.4.1 Breakup and inelastic cross sections

In order to extract the breakup crosssection from the result of our calcu-
lation, we needthe probability that the projectile is unbound after collision

2For example,a collision between11Be and 208Pb at an energyof 70A MeV leadsto a
scattering angle of 4� at an impact parameter b = 10 fm.
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with the target (i.e. at �nal time tout ). In other words,we needthe probabil-
it y that the systemis in oneof the positive energyeigenstatesof H 0 (3.20).
With normalisation (3.21), this reads

dP(m0 )
bu

dk
(k; b) =

X

l j m

jh� kl j m (r )j	 (m0 )(r ; tout )ij 2: (3.36)

As already mentioned, the projection of the total angular momentum of the
initial state m0 is unknown. The calculation must then beperformedfor each
possiblevalue of m0 and the results have to be averaged.We then obtain

dPbu

dk
(k; b) =

1
2j 0 + 1

X

m0

dP(m0 )
bu

dk
(k; b): (3.37)

With the aim of obtaining the breakup probability as a function of the
energy, it su�ces to usethe fact that k =

q
2�E =�h2. Finally, we obtain

dPbu

dE
(E; b) =

�
�h2k

1
2j 0 + 1

X

m0

X

l j m

jh� kl j m (r )j	 (m0 )(r ; tout )ij 2: (3.38)

This probability is computed for one impact parameter (i.e. one tra jec-
tory). In order to work out the breakup crosssection,the calculation has to
be performedfor all the tra jectories,and the probabilities (3.38) have to be
summedover all the impact parameters:

d� bu

dE
= 2�

Z 1

0

dPbu

dE
(E; b)bdb: (3.39)

When the nuclear interaction between the projectile and the target is sim-
ulated by an impact-parametercuto�, the lower bound in (3.39) is replaced
by bmin .

In the sameway, the excitation probability to the bound state of energy
Enl j can be calculated:

Pnl j (b) =
1

2j 0 + 1

X

m0

X

m
jh� nl j m (r )j	 (m0 )(r ; tout )ij 2: (3.40)

From this probability, the inelastic crosssection can be deducedby taking
the contribution of all the tra jectories into account:

� nl j = 2�
Z 1

0
Pnl j (b)bdb: (3.41)

When purely real potentials are used to model the projectile-target in-
teraction, the normalisations(3.19) and (3.21) lead to the following relation
betweenthe probabilities:

X

nl j

Pnl j (b) +
Z 1

0

dPbu

dE
(b;E)dE = 1: (3.42)
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The summation in this relation must include all bound states, including the
Pauli forbidden ones. If complexnuclearpotentials are included in the time-
dependent potential (3.26), the norm of the wave function is not preserved.
In this case,(3.42) becomes

X

nl j

Pnl j (b) +
Z 1

0

dPbu

dE
(b;E)dE =

1
2j 0 + 1

X

m0

k	 (m0 )(tout )k2: (3.43)

3.4.2 Parallel momen tum distribution

In Chapter 1, we have seenthat information about the halo structure could
also be obtained by measuringthe momentum distribution of the projectile
fragments after breakup (seeSec.1.2.4). Such a distribution can be calcu-
lated in our model in the following way.

As for the breakupprobability, this distribution is obtainedby projecting
the �nal wave function onto scattering states of the projectile. However,
sincethe direction followed by the projectile fragments must be taken into
account, the positive energy states described in Sec.3.1.2 cannot be used
directly here. Nevertheless,wecanconstruct, from thosestates,the distorted
wave corresponding to the scattering states with outgoing wave vector k of
the relative motion of the fragment and the core,and with projection of the
fragment spin mI (seee.g. [Joa75, Chapter 18]):

hr jk (� ) mI i =
1
k

X

l j m

i le� i (� k lj + � l )

"
X

m l

(l I mlmI jj m)Y � m l
l (
 k)

#

� kl j m (r );(3.44)

where
 k corresponds to the solid anglede�ning the direction of k , and � kl j

and � l are the nuclear and Coulomb phaseshifts respectively (see[Joa75,
Sec.4.3]).

The momentum distribution of the relative motion betweenthe projectile
fragments after breakup then reads

dPbu

dk
(k ; b) =

1
2j 0 + 1

X

m0m I

jhk (� ) mI j	 (m0 )(r ; tout )ij 2: (3.45)

Inserting (3.44) into (3.45) gives

dPbu

dk
(k ; b) =

1
k2

1
2j 0 + 1

X

m0m I

X

l j m
l0j 0m0

am0
kl j ma� m0

kl0j 0m0

�

"
X

m l

(l I mlmI jj m)Y � m l
l (
 k)

# 2

4
X

m0
l

(l0I m0
lmI jj 0m0)Y

m0
l

l0 (
 k)

3

5 ;

(3.46)

where

am0
kl j m = (� i ) le� i (� k lj + � l )h� kl j m (r )j	 (m0 )(r ; tout )i : (3.47)
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In order to obtain the parallel momentum distribution, the probability
(3.47) must be integrated over the momentum components perpendicular to
the tra jectory:

dPbu

dkk
(kk; b) =

Z dPbu

dk
(k ; b)dk ? : (3.48)

Choosing the z axis of our coordinate system in the direction of the inci-
dent beam, the parallel momentum kk corresponds to the z-component kz.
Eq. (3.48) expressedin cylindrical coordinates (k � (k? ; ' k ; kk)) reads

dPbu

dkk
(kk; b) =

Z 2�

0
d' k

Z 1

0

dPbu

dk
(k ; b)k? dk? : (3.49)

Since
Z 2�

0
Y � m l

l (
 k)Y
m0

l
l0 (
 k)d' k = 2� Y � m l

l (� k ; 0)Y m l
l0 (� k ; 0)� m l m0

l
; (3.50)

inserting (3.46) into (3.49) gives

dPbu

dkk
(kk; b) =

2�
2j 0 + 1

X

m0m
mI ml

Z 1

0

�
�
�
�
�
�

X

l j

(l I mlmI jj m)
1
k

am0
kl j mY m l

l (� k ; 0)

�
�
�
�
�
�

2

k? dk? ;

(3.51)

using

k =
q

k2
k + k2

? (3.52)

and

� k = arctan
k?

kk
: (3.53)

As for the breakup crosssection, the parallel momentum distribution is
obtained by summing the probability (3.49) over all possibletra jectories

d� bu

dkk
(kk) = 2�

Z 1

0

dPbu

dkk
(kk; b)bdb (3.54)

3.4.3 First-order appro ximation

We have seenin Sec.2.3.2that, when the time-dependent potential V (3.26)
is small, the perturbation theory enablesus to computea �rst-order approx-
imation of the solution of the time-dependent Schr•odinger equation (2.29).
Usingthis theory, wecanwork out the projection of the time-dependent wave
function 	 (m0 ) upon the unperturbed Hamiltonian eigenfunctionsde�ned in
Sec.3.1.2. With the initial condition that the projectile is in its ground state
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� n0 l0 j 0m0 of energyE0 at time t in = �1 , the �rst-order perturbation theory
givesus (seeSec.2.3.2)

h� xl j m (r )j	 (m0 )(r ; t)i = � xn 0 � l l0 � j j 0 � mm 0 e� iE 0 t=�h +
e� iE t=�h

i �h

�
Z t

�1
ei! t0

h� xl j m (r )jV(t0)j� n0 l0 j 0m0 (r )i dt0;

(3.55)

wherex stands either for n in the caseof bound states or for k in the case
of scattering states. In this expression,! = (E � E0)=�h, where E is the
energyof state j� xl j m i ; that is to say Enl j for bound statesand �h2k2=2� for
scattering states.

This leadsto the following expressionfor the breakup probability (3.38):

dPbu

dE
(E; b) =

�
�h2k

1
�h2

1
2j 0 + 1

X

m0

X

l j m

j
Z 1

�1
ei! t0

h� kl j m (r )jV(t0)j� n0 l0 j 0m0 (r )i dt0j2:

(3.56)

Inserting (3.55) in (3.40), we �nd

Pnl j (b) =
1
�h2

1
2j 0 + 1

X

m0

X

m
j
Z 1

�1
ei! t0

h� nl j m (r )jV(t0)j� n0 l0 j 0m0 (r )i dt0j2

(3.57)

for the excitation probability.
The expressions(3.56) and (3.57) can easily be calculated under two

conditions (seeRef. [WA79]). The �rst is that the interactions betweenthe
target and the two constituents of the projectile are supposedto be purely
Coulombic. The secondcondition is to approximate the classicaltra jectory
by a straight line. Both conditions are ful�lled when consideringa large
impact parameter tra jectory with high velocity. For large b, the e�ects of
the nuclear part of VcT and Vf T becomeindeed negligible. Moreover, the
curvature of the tra jectory can be neglectedat su�cien tly high energy(see
Sec.3.3). Furthermore, the interaction betweenthe target and the projectile
diminisheswhen increasingthe impact parameter,which legitimisesthe use
the �rst-order perturbation theory.

The �rst condition implies that the time-dependent potential V (3.26)
can be written as

V(t) =
ZcZT e2

4� � 0RcT (t)
+

Z f ZT e2

4� � 0Rf T (t)
�

ZP ZT e2

4� � 0R(t)
: (3.58)

When r < R, this potential can be expandedinto multip olesas follows (see
e.g. Ref. [CDL73, pp 1055-1056]):

V(t) =
ZT e
4� � 0

1X

� =1

4�
2� + 1

e�

�
�X

q= � �

(� )qr � Y � q
� (
)

Y q
� (
 R(t))
R(t)� +1

(3.59)
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wherethe e�ectiv e chargee� is de�ned by

e� =
� mc

mP

� �

Z f e+
�

�
mf

mP

� �

Zce: (3.60)

The solid angles
 and 
 R indicate the direction in the projectile rest frame
of r and R respectively. The Y m

l functions are the usualsphericalharmonics
[CDL73, Appendix A-VI].

Inserting this expressioninto (3.56), and using the Wigner-Eckart theo-
rem [Edm57, Chapter 5] and its corollaries,we obtain

dPbu

dE
(E; b) =

�
�h4k

1
2j 0 + 1

� ZT e
4� � 0

� 2 X

l j

(2j + 1)
1X

� =1

(4� )2e2
�

(2� + 1)3

�jh l I j kY (� )kl0I j 0ij 2(R kl j � )2
�X

q= � �

jI q
� (! )j2 (3.61)

for the breakup probability. In this expression,the reducedmatrix element
reads

hlI j kY (� )kl0I j 0i =
(� 1)I + j 0+ �

p
4�

p
2l + 1

p
2� + 1

q
2l0 + 1

q
2j 0 + 1

�

 
l � l0
0 0 0

! (
j l I
l0 j 0 �

)

; (3.62)

where
 

j 1 j 2 j 3

m1 m2 m3

!

(3.63)

denotesthe Wigner 3-j symbols, while
(

j 1 j 2 j 12

j 3 J j 23

)

(3.64)

corresponds to the 6-j symbols (see[Edm57]). The radial integral reads

R xl j � =
Z 1

0
uxl j (r ) r � un0 l0 j 0 (r )dr; (3.65)

with x = k in this case,and the time integral is de�ned as

I q
� (! ) =

Z 1

�1
ei! t Y q

� (
 R(t))
R(t)� +1

dt: (3.66)

Becauseof the presenceof R� +1 (t) in the denominator of (3.66), the
importance of the multip olesdecreaseswith increasing� . If we neglect all
the terms above � = 1, the sum over � in (3.61) reducesto its �rst term
which corresponds to the E1 or electric-dipole transition probability.

When the classicaltra jectory is supposedto be a straight line, the in-
tegrals over time (3.66) in the E1 term can be performed analytically (see
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Appendix A). This enablesus to calculate the breakup probability at the
�rst-order perturbation theory for E1 transitions

dPE 1
bu

dE
(E; b) =

4�
9�h4k

! 2

v4

1
2j 0 + 1

� e1ZT e
4� � 0

� 2 n
[K 0(x)]2 + [K 1(x)]2

o

�
X

l j

(2j + 1)jhlI j kY (1) kl0I j 0ij 2(R kl j 1)2 (3.67)

where x = ! b=v, and K 0 and K 1 are modi�ed Besselfunctions [AS70, pp
374-379].In this expressionthe only factor that remainsunevaluated is the
radial integral R kl j 1 which dependson the choiceof the Vcf potential (3.5).
Therefore,it has to be calculatedfor each potential.

In the sameway, we can calculatethe excitation probability (3.57) at the
�rst-order perturbation approximation for E1 transitions P E 1

nl j . The expres-
sionof this probability is very similar to that of the breakupprobability. P E 1

nl j
is indeed given by the right hand side of (3.67) divided by �

�h2k , and where
R kl j 1 is replacedby R nl j 1.

In order to obtain an approximation of the breakup crosssectionat the
�rst order, we needto integrate the breakup probability (3.67) over the im-
pact parameters (see (3.39)). In this casethis integral can be performed
analytically using [AS70, relation 9.6.28]. The �rst-order approximation of
the breakup crosssectionthen reads

d� E 1
bu

dE
= 2�

Z 1

bmin

dPE 1
bu

dE
(E; b)bdb

=
8� �
9�h4k

1
v2

1
2j 0 + 1

� e1ZT e
4� � 0

� 2

xmin K 0(xmin )K 1(xmin )

�
X

l j

(2j + 1)jhlI j kY (1) kl0I j 0ij 2(R kl j 1)2 (3.68)

wherexmin = ! bmin =v corresponds to the impact parametercuto� bmin used
to simulate the nuclear interaction betweenthe projectile and the target in
the black disk approximation (seeSec.3.2).

When the secondterm of the sum over � is not negligiblein (3.61), it has
to be taken it into account. It corresponds to the E2 or electric-quadrupole
transition. In this casetoo the calculation can be performed analytically.
Following the samescheme,we obtain the breakup probability at �rst-order
perturbation approximation for E2 transitions (seeAppendix A for the cal-
culation of the I q

2):

dPE 2
bu

dE
(E; b) =

�
25�h4k

! 4

v6

1
2j 0 + 1

 
e2ZT e2

4� � 0

! 2

�
�

[K 0(x)]2 +
4
3

[K 1(x)]2 +
1
3

[K 2(x)]2
�

�
X

l j

(2j + 1)jhlI j kY (2) kl0I j 0ij 2[R kl j 2]2: (3.69)

As for the E1 transitions, the E2 excitation probability P E 2
nl j is obtained by

dividing the expressionof the breakup probability �
�h2k , and replacing R kl j 2

by R nl j 2.
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As mentioned in the beginningof this section,theseresultsare valid only
for large impact parameters. Therefore, they cannot be used to calculate
accurate breakup probabilities. Neverthelessthey provide us with a good
test of the convergenceof our algorithm. Our results should indeed con-
vergeto the probabilities calculatedherewhen the �rst-order approximation
is legitimate. It should also be noted that P E 2

bu =dE includes a v� 6 factor
while dPE 1

bu =dE exhibits a v� 4 factor. This meansthat, at high velocities,
the quadrupole transitions, and hencethe higher-order multip oles, become
negligiblewhencomparedwith the dipoleones.Therefore,weshouldobserve
that at high velocities and high impact parameters,the breakupprobabilities
computedwith our model convergetowards dPE 1

bu =dE.

3.5 Symmetry of the Hamiltonian

In order to diminish the number of operationsrequired in the evolution algo-
rithm, it is important to take the symmetriesof the problem into account. In
this section,we show that the time-dependent Hamiltonian H (3.1) obtained
from the semiclassicalapproximation exhibits a re
ection symmetry in the
plane of the tra jectory (seealso Ref. [AW75, Chapter I I]). As will be seen
below, this enablesus to divide the computational time by approximately
two.

We have seenearlier that the total Hamiltonian H is the sum of the
projectile Hamiltonian H0 (3.4) and the projectile-target interaction V (3.26).
The former compriseskinetic and potential terms which are invariant by
rotation and parity-re
ection. Therefore,the spatial symmetriesof the total
Hamiltonian H can be deducedfrom thoseof V.

From expression(3.26), we can seethat V dependsonly on the relative
distancesbetweenthe projectile constituents and the target. Thesedistances
are invariant under a re
ection in the tra jectory plane. This implies that V
exhibits a re
ection symmetry in that plane.

This operation canbe factorisedinto the composition of the parity re
ec-
tion in the origin anda rotation of an angleof � aroundthe axisperpendicular
to the tra jectory plan. Sincethe Hamiltonian H0 is invariant under parity
and rotation transformations, it is alsoinvariant for this re
ection. Therefore
this symmetry is valid for the total Hamiltonian H .

With the coordinate systemde�ned in the previoussection,the re
ection
operator, which we denoteby Sy, can be decomposedinto

Sy = R(1y; � )� ; (3.70)

where� is the operator of parity re
ection in the origin [CDL73, AppendixFI I],
and

R(1y; � ) = ei� Jy (3.71)

is the rotation operator of an angleof � aroundthe y axis [Edm57,Chapter 4].
As both R(1y; � ) and � are linear and unitary, the re
ection operator is also
linear and unitary.
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From the de�nition (3.70), we seethat the re
ection operator acts only
on the spin-angularspace.Its e�ect on the jl j mi vector states is:

Sy jl j mi = R(1y; � )� jl j mi

= (� 1)lei� Jy jl j mi

= (� 1)l
X

m0

dj
m0m (� )jl j m0i

= (� 1)l+ j + m jl j � mi : (3.72)

In order to establish this expression,we have used properties of rotation
matrices which can be found in [Edm57, Chapter 4].

From the precedingremarks, we know that in this referenceframe, the
total Hamiltonian H is invariant under Sy:

SyH (t)Sy
y = H (t): (3.73)

In order to infer the consequencesof this symmetry on the wave function,
we consider the wave function 	 (m0 ) , the solution of the time-dependent
Schr•odinger equation

i �h
@
@t

	 (m0 )(r ; t) = H (t)	 (m0 )(r ; t); (3.74)

with the initial condition

	 (m0 )(r ; t in ) = � n0 l0 j 0m0 (r ); (3.75)

Its partial-wave expansionreads

	 (m0 )(r ; t) = r � 1
X

l j m

 (m0 )
l j m (r; t)h
 jl j mi : (3.76)

Applying the re
ection operator Sy on both sidesof Eq. (3.74) givesus

i �h
@
@t

Sy 	 (m0 )(r ; t) = SyH (t)Sy
ySy 	 (m0 )(r ; t); (3.77)

wherewehaveusedthe fact that Sy is unitary and that it doesnot dependon
time. Taking (3.73) into account shows that Sy 	 (m0 )(t) is also the solution
of the time-dependent Schr•odingerequation (3.74) with the initial condition

Sy 	 (m0 )(r ; t in ) = Sy � n0 l0 j 0m0 (r )

= (� 1)l0+ j 0+ m0 � n0 l0 j 0 � m0 (r ); (3.78)

wherewe have used(3.72) Using the fact that Sy is linear, and taking (3.76)
and (3.72) into account, we can write its partial-wave expansionas

Sy 	 (m0 )(r ; t) = r � 1
X

l j m

 (m0 )
l j m (r; t)h
 jSy jl j mi

= r � 1
X

l j m

(� 1)l+ j + m  (m0 )
l j m (r; t)h
 jl j � mi : (3.79)
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Let us considernow the wave function 	 (� m0 ) , the solution of the time-
dependent Schr•odinger equation (3.74) with the initial condition

	 (� m0 )(r ; t in ) = � n0 l0 j 0 � m0 (r ): (3.80)

Its partial-wave expansioncan be written as

	 (� m0 )(r ; t) = r � 1
X

l j m

 (� m0 )
l j � m (r; t)h
 jl j � mi : (3.81)

Sinceboth 	 (� m0 ) andSy 	 (m0 ) arethe solution of the sametime-dependent
Schr•odingerequation(3.74)with the sameinitial condition but for a constant
phase,we have

	 (� m0 )(r ; t) = (� 1)l0+ j 0+ m0 Sy 	 (m0 )(r ; t): (3.82)

From partial-wave expansions(3.79) and (3.81), we deducethat

 (� m0 )
l j � m (r; t) = (� 1)l0+ j 0+ m0+ l+ j + m  (m0 )

l j m (r; t): (3.83)

This meansthat the wave function obtained from the initial bound state
with spin projection � m0 can easily be obtained from that computed with
an initial spin projection equal to m0. Therefore, the computational time
can be divided by approximately two by computing the evolution for initial
bound stateswith either negative or positive spin projections only.
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Chapter 4

Solving the time-dep endent
Schr•odinger equation

In this chapter, we describe more preciselythe algorithm we useto solve the
time-dependent Schr•odinger equation (2.29) appearing in the semiclassical
approximation Sec.2.3. The main idea of this algorithm is to calculate the
time evolution of the projectile wave function step by step from an initial
time t in up to a �nal time tout .

In our case,the Hamiltonian H divides into two parts (seeSec.2.3):

H (t) = H0 + V(t); (4.1)

where the spatial dependenceis understood. H0 (3.4) is the Hamiltonian
describingthe projectile internal structure, which doesnot depend on time.
V (3.26) is a time-dependent potential modelling the perturbation of this
structure due to the interaction with the target. In our algorithm, these
operators, as well as the halo-nucleus wave function, are expandedonto a
three-dimensionalsphericalmesh. This inducesa diagonal representation of
V. A mereangular basischangeleadsto a simple representation of H 0.

This enablesus to treat separately the e�ects of both operators upon
the the projectile wave function. This technique, introducedin Sec.2.3.3, is
inspired by the algorithm developed by Melezhik [Mel97].

This chapter is divided into three sections. In the �rst one, we describe
the angular treatment of the wave function. The secondone examinesthe
discretisation of the radial variable. The details of the evolution calculation
are explainedin the third sectionof this chapter.

4.1 Angular expansion

As mentioned above, the cornerstoneof our algorithm is to develop the wave
function onto a three-dimensionalsphericalmesh. It is composedof an an-
gular meshand a radial mesh. The angular meshis related to two angular
function bases. This mesh, as well as the related functions, have been in-
troducedby Melezhik in Ref. [Mel97] and fully developed in Ref. [CBM03b].
The coexistenceof two angular basesenablesus to treat each term of the
semiclassicalHamiltonian (4.1) in its simplest expression.

53
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In the �rst part of this section,wegivea precisedescriptionof the angular
meshand the angular basesit is related to. In the secondpart, we develop
the angular expansionof the wave function and the expressionof the matrix
elements of H0 and V. The third part looks at numerical aspects of this
method.

4.1.1 Lagrange mesh

With the aim of constructing the angular meshwe usein our method, let us
�rst introducethe theory of the Lagrangemesheson the unit sphere.

A Lagrangemesh[BH86] consistsof N points 
 j . At each point of the
mesh a weight � j is associated so as to de�ne a Gaussquadrature. This
quadrature enablesus to approximate integrals over the unit sphereby

Z

4�
g(
) d
 �

NX

k=1

� kg(
 k): (4.2)

This mesh is related to a Lagrangebasis which consistsof a set of N
functions f i which satisfy the following condition:

f i (
 j ) =
1

p
� i

� ij : (4.3)

That is to say that they vanish at all points of the mesh but one. From
this condition, we seethat they areorthonormal at the Gaussapproximation
(4.2):

Z

4�
f �

i (
) f j (
) d
 �
NX

k=1

� k f �
i (
 k)f j (
 k)

=
NX

k=1

� k
1

p
� i

� ik
1

q
� j

� j k

= � ij : (4.4)

The main interest of thosefunctions is that the potential matrix is diag-
onal at the Gaussapproximation

Z

4�
f �

i (
) V(r; 
 ; t)f j (
) d
 �
NX

k=1

� k f �
i (
 k)V(r; 
 k ; t)f j (
 k)

= V(r; 
 i ; t)� ij : (4.5)

In order to construct this basis,let us start from a set of N functions Y�

orthonormal at the Gaussapproximation

Z

4�
Y �

� (
) Y� 0(
) d
 �
NX

k=1

� kY �
� (
 k)Y� 0(
 k)

= � � � 0: (4.6)
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From this relation, we seethat the matrix bS de�ned by

Si� =
q

� i Y� (
 i ) (4.7)

is unitary. This meansthat we alsohave

NX

� =1

q
� i Y �

� (
 i )
q

� j Y� (
 j ) = � ij (4.8)

Using this, we can construct the Lagrangefunctions from the Y� functions:

f i (
) =
NX

� =1

q
� i Y �

� (
 i )Y� (
) : (4.9)

From (4.8) and (4.6), we seethat this expressionsatis�es both (4.3) and
(4.4).

In this development, the functions Y� and f i are assumedto be orthonor-
mal only at the Gauss approximation. The Lagrange functions we have
obtained in this way are in fact not exactly orthonormal. However, this basis
hasproven to give accurateresults [MB99]. It should be noted that another
angular basishas beenconstructedby Vincke, Malegat and Baye [VMB93].
The functions of this basis are exactly orthonormal. In the future, it will
be interesting to ascertainwhether or not this other basiscan improve the
accuracyof the scheme.

4.1.2 Angular mesh

In order to obtain a Gaussquadrature on the unit sphere,we considertwo
di�eren t quadratures: one over the azimuthal angle ' and one over the co-
latitude � .

The former is a Gauss-Fourier quadrature. Its meshcomprisesN ' angles
' j ' (j ' = 1; : : : ; N ' ) equally spacedover [0; 2� ]:

' j ' = � (2j ' � 1)=N ' : (4.10)

The associated weights are

� ( ' )
j '

= 2� =N ' : (4.11)

This quadrature rule givesan exact evaluation of integralsof ein' with jnj <
N ' :

Z 2�

0
ein' d' =

N 'X

j ' =1

� ( ' )
j '

ein' j ' 8jnj < N ' :

(4.12)

This can be easily demonstratedby inserting (4.10) and (4.11) in the right-
hand side of (4.12), and comparing the value of the sum with that of the
integral:

Z 2�

0
ein' d' = 2� � n0: (4.13)
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We usethe Gauss-Legendrequadrature for integralsover � [AS70, Chap-
ter 25]. The related meshconsistsof N � angles� j � (j � = � (N � � 1)=2; : : : ;
(N � � 1)=2) given by the zerosof Legendrepolynomial PN � [AS70, Chap-
ter 22]:

PN � (cos� j � ) = 0: (4.14)

SinceLegendrepolynomialsare either even or odd, the � j � exhibit the prop-
erty

cos� j � = � cos� � j � : (4.15)

The Gauss-Legendreweights are

� (� )
j �

= 2=[sin� j � P0
N �

(cos� j � )]2 (4.16)

This quadrature rule givesexact valuesfor integrals of polynomials in cos�
of order lessor equal to 2N � � 1 [AS70, Chapter 25]:

Z 1

� 1
pn (cos� )dcos� =

(N � � 1)=2X

j � = � (N � � 1)=2

� (� )
j �

pn (cos� j � ) 8n � 2N � � 1 (4.17)

wherepn is a polynomial of degreen.
The resulting two-dimensionalmeshis then composedof the N = N � N '

points


 j = (� j � ; ' j ' ) (4.18)

wherej � (j � ; j ' ). The associated weights are

� j = � (� )
j �

� ( ' )
j '

: (4.19)

4.1.3 Angular bases

As seenin Sec.4.1.1, the construction of Lagrangefunctions requiresa set
of N functions Y� orthonormal at the Gaussapproximation. Becausewe are
looking for a basisin which the matrix of the unperturbed Hamiltonian H 0

is diagonal,we �rst considerthe sphericalharmonicsY m l
l (seee.g. [CDL73,

Appendix A-VI]):

Y m l
l (
) = N lm l P

jm l j
l (cos� )eim l ' (4.20)

with l � 0 and jml j � l . In this expression,N lm l is a normalisation factor

N lm l = (� 1)(m l + jm l j)=2

vu
u
t 2l + 1

4�
(l � jml j)!
(l + jml j)!

; (4.21)

and Pm l
l is the associated Legendrefunction

Pm l
l (x) = (1 � x2)m l =2 dm l

dxm l
Pl (x) (4.22)
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wherePl is the Legendrepolynomial of order l .
With normalization factor (4.21), the sphericalharmonicsare orthonor-

mal
Z

4�
Y m l �

l (
) Y m l
0

l0 (
) d
 = � l l0� m l m l
0 (4.23)

From the preceding relations, we see that the orthogonality property
(4.23) is exact at the Gaussapproximation for jml � ml

0j < N ' and l + l0 �
2N � � 1. The �rst condition can be easily derived from (4.20) and (4.12).
The integral over ' appearing in (4.23) is thus equalto zerounlessm l

0 = ml .
In that case,the cos� dependenceof the integrand of (4.23) is a polynomial
of degreel + l0. This, using Eq. (4.17), justi�es the secondcondition.

From those conditions, we see that all spherical harmonics Y m l
l with

jml j < N ' =2 and l < N � are orthonormal at the Gaussapproximation.
As ml is an integer, we consideronly odd N ' . Choosing an odd N ' or

the corresponding even value N ' + 1 would indeed lead to the sameset of
sphericalharmonicsfor which the Gaussquadrature is exact.

In a complete set of spherical harmonics, all possibleY m l
l are included

up to a certain value of l . This maximal value is thus larger than any of
the possibleml . Therefore, in order to obtain the largest complete set of
spherical harmonics that are orthonormal at the Gaussapproximation, we
considerN � � N ' =2.

This angular meshand the associated Gaussquadrature lead then to a
set of N � N ' � (N 2

' � 1)=4 sphericalharmonicswhich are orthonormal at the
Gaussapproximation. Therefore, those functions are chosento be part of
the �rst angular basis:

Y� = Y m l
l 8l < N � ; jml j <

N '

2
(4.24)

where� � (l ; ml ).
In order to obtain a basisof N functions, we complete this set of exact

sphericalharmonicsby modi�ed onesin the following way:

Y� = eY m l
l 8jml j <

N '

2
; N � � l < jml j + N � (4.25)

where� � (l ; ml ). We chooseto keepjml j < N ' =2 so that the orthogonality
property (4.23) is still satis�ed by the factors depending on ' at the Gauss
approximation. The modi�ed sphericalharmonicsthen read

eY m l
l (
) = fN lm l

eP jm l j
l (cos� )eim l ' : (4.26)

where fN lm l are normalisation factorscalculatedat the Gaussapproximation,
and eP jm l j

l are the associated Legendrefunctions (4.22) modi�ed so that the
Y� are orthogonal at the Gaussapproximation. The modi�cation consists
in orthogonalising the associated Legendrefunctions with a Gram-Schmidt
algorithm using the Gauss-Legendrequadrature as a scalarproduct.

We seefrom (4.17) that the �rst modi�cation occurs for l = N � where
the normalisation factor fN lm l di�ers from (4.21). For l = N � + 1, eP jm l j

l hasto
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Figure 4.1: Schematic representation of the Y� basis: each dot corresponds
to a basisstate. Up to l = (N ' � 1)=2 (dotted line), all Y m l

l are included.
Below the dashedline, all basisfunctions are Y m l

l . Above this line, modi�ed
sphericalharmonicsare used.

be orthogonalisedto P jm l j
l � 2 and renormalised. It should be noted that eP jm l j

l

and eP jm l j
l � 1 are already orthogonal at the Gaussapproximation becausethey

di�er in parity. For l = N � + 2, eP jm l j
l hasto be orthogonalisedto P jm l j

l � 4 and to
the already modi�ed eP jm l j

l � 2 . It needsalsoto be renormalised.This procedure
must be doneat each value of ml for all N � � l < jml j + N � .

This leadsto a basisof N functions Y� orthonormal at the Gaussapprox-
imation. Fig. 4.1 represents this basis. Each dot correspondsto a basisstate.
We seethat up to l = (N ' � 1)=2 (i.e. below the dotted line), all possible
sphericalharmonicsare included. For larger l , jml j larger than (N ' � 1)=2
are missing. For l � N � (i.e. above the dashedline), modi�ed spherical
harmonicsare used: for l = N � , only the normalisation factor is modi�ed;
for larger l , the functions Y� di�er from sphericalharmonics. The Lagrange
basisis derived from thesefunctions using (4.9).
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4.1.4 Wave-function expansions in spin-angular space

Introducing the spin dependencethrough spinors, the wave function expan-
sion in the spherical-harmonicbasisf Y� g reads

	( r ; t) = r � 1
IX

m I = � I

NX

� =1

�	 m I
� (r; t)Y� (
) jI mI i (4.27)

whereI and mI are the spin of the fragment and its projection. We remind
the reader that in our casethe former is assumedto be �xed, and that the
spin of the core is neglected. In this basis,the wave function is represented
by the vector �	 whoseelements are

�	 m I
� (r; t) = r

Z

4�
Y m l �

l (
) hI mI j	(
 ; r; t)i d
 (4.28)

The wave function can also be expandedin the angular Lagrange-basis
f f i g:

	( r ; t) = r � 1
IX

m I = � I

NX

i =1

q
� i  

m I
i (r; t)f i (
) jI mI i : (4.29)

Using (4.3), we seethat the coe�cien ts  m I
i correspond to the value of the

function at the meshpoints:

 m I
i (r; t) = rhI mI j	(
 i ; r; t)i : (4.30)

The vector 	 representing the wave function in the Lagrangebasisis com-
posedof elements

	 m I
i (r; t) =

q
� i  

m I
i (r; t): (4.31)

Changingbasesis performedusing matrix bS (4.7):

	 (r; t) = bS �	 (r; t) (4.32)

and by unitarit y of bS,

�	 (r; t) = bSy	 (r; t): (4.33)

When expressedin the spherical-harmonicbasis,the projectile Hamilto-
nian matrix cH0 is diagonal with respect to both l and the projection of the
total angular momentum m = ml + mI . If the core-fragment potential (3.5)
includesa spin-orbit coupling term, cH0 is not diagonal with respect to the
orbital-momentum and spin projections ml and mI .

cH
m I m0

I
0� � 0 (r ) =

(

�
�h2

2�

"
@2

@r 2
�

l (l + 1)
r 2

#

+ V0(r )

)

� m I m0
I
� � � 0

+ hlml I mI jL � I jlml
0I m0

I i VLI (r )� m l + m I m l
0+ m0

I
� l l0: (4.34)
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where � is the reduced mass of the two-body system, and kets jlm l I mI i
correspond to

h
 jlml I mI i = Y m l
l (
) jI mI i : (4.35)

In order to derive the matrix elements (4.34), we assumethat functions
Y� exhibit the sameproperties as exact spherical harmonics. This means
that matrix elements hY� jL 2jY� 0i are approximated by l(l + 1)� � � 0. The same
assumption is made when calculating the matrix elements of L � I . This
approximation concernsonly the highest l valuesbecauseit is exact for all
Y� up to l = N � � 1. The error due to this approximation can thereforebe
consideredas negligible if N � is chosensu�cien tly high.

The matrix cH0 is thus not exactly diagonal due to the spin dependence
of the wave function. However, there are few non-diagonalelements, and an
adequatestorageof the wave-function components leads to a band matrix
with a small bandwidth (seeSec.4.2.2and Appendix B).

The time-dependent potential V is expressedin the Lagrangebasis. In
this basis, the matrix of this potential is exactly diagonal, as explained in
Sec.4.1.1:

bV
m I m0

I
ii 0 (r; t) � V(
 i ; r; t)� ii 0� m I m0

I
: (4.36)

Moreover, we seethat the elements are merely the valuesof the potential at
the meshpoints. The matrix bV is thereforevery easyto compute.

We can now expand the time-dependent wave function in two angular
bases.When expressedin the �rst one,which comprisesspherical-harmonic-
like functions, the projectile Hamiltonian matrix cH0 is diagonal but for its
spin dependence.The secondbasis is a set of Lagrangefunctions in which
the projectile-target interaction matrix bV is fully diagonal.

4.1.5 Numerical aspects

In order to determine the number of angular functions neededin the evolu-
tion calculation, we study the convergenceof the schemewith regard to the
valuesof N � and N ' . As we are mainly concernedby the projectile breakup,
the convergenceis analysedthrough the values of the breakup probability
dPbu=dE (3.38) and crosssectiond� bu=dE (3.39).

As described in Sec.3.4, thesevaluesare obtained by projecting the �nal
wave function 	( r ; tout ) onto the eigenstatesof the projectile Hamiltonian
H0 of positive energy � kl j m (r ) (3.20). The set of those distorted waves is
chosenso as to compriseall partial waves up to a certain value lmax of the
orbital momentum (i.e. we consider all values of l lower or equal to lmax

and all valuesof the total momentum j obtained by coupling all the ls to
the intrinsic spin of the projectile I , and of courseall possibleprojections
m of the total momentum). Therefore,we consideronly the valuesof l for
which all possiblesphericalharmonicsare includedin our angularbasis. This
meansthat lmax has to be chosenlower or equal to (N ' � 1)=2. In practice,
we considerdistorted waveswith l up to this maximal value.
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From the above statement, we seethat the wave-function components
with l larger than (N ' � 1)=2 are not taken into account in the calculation
of the breakup crosssection. Therefore the convergenceof the schemewill
be achieved only if thesecomponents are very weakly populated.

In previous studies [MB99, CBM03b], N � and N ' were chosenequal to
each other. With this choice, a great number of components of the wave
function correspond to l larger than (N ' � 1)=2. Since these components
do not contribute directly to the breakup crosssection,they are of little use
in the evolution calculation. Their number should therefore be reducedas
much aspossible.Numerical testshaveshown that in all cases(small or large
impact parameter,including or not nuclearpotentials in the projectile-target
interaction, etc.) choosing the lowest value of N � (i.e. (N ' + 1)=2) doesnot
causethe convergenceof the schemeto deteriorate. Therefore,we consider
that N � = (N ' + 1)=2 can be chosenfor practical calculations. This leaves
only one free parameter. This parameter has to be adjusted to ensurethe
convergenceof the scheme.

Wehavefound that a valueof N ' = 7 (with N � = 4) su�ces whenthe �rst
multip ole of the projectile-target potential is dominant. This is the casefor
a purely Coulombic interaction betweentarget and projectile. When other
multip oles becomesigni�cant, larger values of N ' have to be chosen. For
example,a value of N ' = 11 (with N � = 6) is usually neededwhen the nu-
clear interaction betweenthe projectile and the target is taken into account.
Fortunately, the number of partial waves that are to be consideredfor the
breakupcrosssectioncalculation decreasesat higher impact parameter. This
is due to the fact that at higher impact parameter the projectile-target po-
tential is weaker. Our testshave shown that a valueof N ' = 5 (with N � = 3)
can be usedin most casesfor b larger that 100 fm.

4.2 Radial discretisation

After describing the angular expansionof the wave function, we present in
this section the discretisation of the radial variable. We �rst introduce the
conceptof quasiuniformmeshand explain the reasonfor its usein this study.
Secondly, we analysethe wave-function representation on such a meshand
the implications it has on the structure of the Hamiltonian matrices. The
last part of this sectionexaminesnumerical aspectsof this discretisation.

4.2.1 Quasiuniform mesh

As already explained, at initial time, the projectile is assumedto be in its
groundstate. The correspondingwavefunction is signi�cant at smalldistance
and decreasesexponentially at large distance. The radial grid must then
contain enough points near the origin to allow a good description of this
initial state.

Through the interaction with the target, the projectile wave function de-
velopsa long-rangetail which evolvesrather quickly towards large distance
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(seeSecs.4.2.3,5.2.1and 6.2.1). It correspondsmainly to the breakup com-
ponent. Becausethis tail is a slowly varying function of r , its description
requireslesspoints than that of the bound states.

In order to take both aspects into account, Melezhik [Mel97] proposedto
make useof a quasiuniform radial meshwith small stepsnear the origin and
larger onesat large distances.In this work, we follow Melezhik'ssuggestion.
However, we useanother meshsincethe one he proposedturned out to be
not su�cien tly accurateat large distances.

In order to obtain such a mesh,we introduce a variable x 2 [0; 1] such
that

r (x) = rN r g(x)=g(1) (4.37)

where rN r is the upper bound of the radial interval we consider,and g is a
C2([0; 1]) monotonousfunction such that g(0) = 0.

The quasiuniform grid is obtained by mapping a uniform mesh over x
with constant step h = 1=N r onto the radial interval [0; r N r ]. Its points r j r

are calculatedfrom the equally-spacedpoints of the uniform meshx j r = j r h
(j r = 0; : : : ; N r ) through Eq. (4.37):

r j r = r (x j r ): (4.38)

In our study, the functions we are dealing with vanish at r = 0 (see
Eqs. (4.28) and (4.30)). Moreover, since they are square integrable, they
vanish for r ! 1 . In our grid calculation using a �nite radial interval, this
is approximated by assumingthe functions to vanish at the last point of the
mesh. This reads

f (0) = 0 = f (rN r ): (4.39)

On this mesh,the radial integrals are thereforeapproximated by
Z 1

0
f (r )dr =

rN r

g(1)

Z 1

0
g0(x)f (r (x))dx

�
h rN r

g(1)

N r � 1X

j r =1

g0(x j r )f (r j r ): (4.40)

This relation is usedto calculate the scalarproduct of two radial functions.

4.2.2 Radial discretisation of the wave function

In this approximation, the components of the wave function in the angular
bases �	 m I

� (4.28) and 	 m I
i (4.31), which depend on r , are represented by

vectorswhoseelements are the valuesof thosefunctions at meshpoints (see
Appendix B).

As usual in grid calculations, the potential terms of cH0 (4.34) and bV
(4.36) are represented by diagonalmatricescomposedof their valuesat mesh
points. Thereforewe seethat the matrix bV of the time-dependent potential
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is fully diagonal in both its angular and radial representations. The radial
discretisation of matrix elements (4.36) reads

bV
m I m0

I
ij r ;i 0j 0

r
(t) � V(
 i ; r j r ; t)� ii 0� j r j 0

r
� m I m0

I
: (4.41)

This matrix can therefore be easily stored in a one-dimensionarray (see
Appendix B).

Using(4.37), the second-orderdi�eren tial operator appearingin cH0 (4.34)
reads

d2

dr2
=

"
g(1)

rN r g0(x)

#2 "
d2

dx2
�

g00(x)
g0(x)

d
dx

#

(4.42)

where g0 and g00are respectively the �rst and secondderivatives of g. The
di�eren tiation operators over x can be discretisedwith the (2Nd + 1)-point
�nite-di�erence formulaedevelopedin Appendix C. The �rst-order derivative
reads

 
df
dx

!

x j r

� h� 1
NdX

k= � N d

c(1)
k f (x j r + k); (4.43)

with c(1)
0 = 0 and, for k 6= 0,

c(1)
k = (� 1)k� 1 (Nd!)2

k(Nd � k)!(Nd + k)!
: (4.44)

We have then c(1)
� k = � c(1)

k . The secondderivative is given by

 
d2f
dx2

!

x j r

� h� 2
NdX

k= � N d

c(2)
k f (x j r + k); (4.45)

with, for k 6= 0,

c(2)
k = 2c(1)

k =k: (4.46)

Here we have c(2)
� k = c(2)

k . When k = 0,

c(2)
0 = � 2

NdX

j r =1

j � 2
r : (4.47)

The second-orderderivative over r (4.42) of components of the wave function
expressedin the spherical-harmonicbasiscan then be approximated by

 
d2 �	 m I

�

dr2

!

r j r

�
N rX

j 0
r =0

d(2)
j r j 0

r
�	 m I

� (r j 0
r
); (4.48)

whered(2) is the matrix whoseelements are

d(2)
j r j 0

r
=

8
<

:

h
g(1)

hr N r g0(x j r )

i 2 h
c(2)

(j 0
r � j r ) � hg00(x j r )

g0(x j r ) c(1)
(j 0

r � j r )

i
if jj 0

r � j r j � Nd ;
0 otherwise.

(4.49)
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From Eq. (4.49), we seethat the radial discretisation of (4.42) leadsto a
band matrix of (2Nd + 1) bandwidth. This meansthat the band structure of
the spin-angularrepresentation of H0 is enlarged.Taking (4.48) into account,
the radial discretisation of matrix elements (4.34) reads

cH
m I m0

I
0� j r ;� 0j 0

r
=

(

�
�h2

2�

"

d(2)
j r j 0

r
�

l (l + 1)
r 2

j r

� j r j 0
r

#

+ V0(r j r )� j r j 0
r

)

� m I m0
I
� � � 0

+ hlml I mI jL � I jlm0
l I m0

I i VLI (r j r )� j r j 0
r
� m l + m I m0

l + m0
I
� l l0: (4.50)

It should be noted that the matrix cH0 obtained after radial discretisation
remainsquite sparseand easyto handle(seeSec.4.3.4). A suitablestorageof
its components indeedleadsto a band matrix with a rather small bandwidth
(seeAppendix B).

When using �nite-di�erence approximation of di�eren tial operators, we
are usually facedwith a problem at the boundary of the discretisation-mesh.
The useof formulae (4.43) and (4.45), for example,at the initial and �nal
points would require valuesof the function outside the mesh. With the aim
of solvingthis technical problem,we have consideredseveral approximations.
The descriptionof thoseboundary approximations is summarisedin the �rst
sectionof Appendix D.

It shouldbenoted that becauseof the factorsdependingon x j r in formula
(4.49) and of the asymmetryof coe�cien ts c(1)

k , the matrix cH0 is asymmetric.
This meansthat our representation of the hermitian operator H 0 is not her-
mitian. However, we have shown (seeAppendix D) that this representation
is approximately hermitian. This meansthat the non-hermiticity diminishes
when the number of points of the radial mesh is increased. Therefore, if a
su�cien tly accuratemeshis used,the asymmetry of cH0 becomesnegligible.

4.2.3 Numerical aspects

Choice of the poin t distribution

We considertwo kind of function de�ning the quasiuniform mesh. The �rst
onewasusedby Melezhik et al. in previousworks [Mel97, MB99, MB01]. It
reads

g1(x) = eax � 1: (4.51)

Sinceah � 1, the step exponentially increasesfrom about r N r ahexp(� a) to
about rN r ah.

We alsoconsiderthe function we introducedin [CBM03b]:

g2(x) = ax + ln
cosh[a(x � x0)]

cosh(ax0)
: (4.52)

Both functions are monotonic with monotonic derivatives and vanish at 0.
The �rst onehasthe drawback that the gapbetweensuccessivepoints always
increasesand becomestoo largenear r N r for the optimal choiceof parameter



4.2. RADIAL DISCRETISATION 65

a. Function g2 has been devisedto switch progressively from a small step
to a slowly varying larger step. The parameter x0 controls the location of
the region along which the transition occurs. For ax0 > 1, the step is about
rN r h(1 � x0)� 1 exp(� 2ax0) for small x and about r N r h(1 � x0)� 1 for large x.

g2 : a = 5 x0 = 0:8
g2 : a = 5 x0 = 0:6

g1 : a = 3
g1 : a = 8
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Figure 4.2: Radial step as a function of r j r . Four di�eren t meshesare rep-
resented (Nr = 1000, rN r = 800 fm): g1 distribution with a = 8 (dashed
line), g1 distribution with a = 3 (dotted line), g2 distribution with a = 5 and
x0 = 0:6 (full line) and g2 distribution with a = 5 and x0 = 0:8 (dash-dotted
line).

In Fig. 4.2, the step r j r � r j r � 1 betweentwo successive points of the radial
grid is represented as a function of r j r for both kinds of distribution g1 and
g2. Distributions g1 and g2 exhibit the same behaviour for small r : the
initially small step increases,and the larger the parameter a the faster the
increase.But although the g1 step continuesto rise steadily for large r , the
g2 step progressively tends to a plateau. In order to illustrate the in
uence
of the distribution on the evolution of the wave packet, Fig. 4.3 displays the
modulus of the s1=2� 1=2 component of the �nal wave function obtained by
the evolution algorithm. It correspondsto the projection of the wave packet
on jl j mi for l = 0, j = 1=2, and m = � 1=2. The calculation is performed
in the caseof a 11Be projectile on a 208Pb target with a relative velocity
v = 0:37c and at an impact parameterb= 25 fm (seeChapter 5 for details of
that collision). It is performedfor all the mesh-point distributions illustrated
in Fig. 4.2.

The distribution shown as a dashedline in Fig. 4.2 corresponds to the
meshused in Refs. [MB99, MB01], i.e., a g1 distribution with a = 8. The
small step near r = 0 allows a good description of the bound states of the
two-body systembut the stepsnear r N r becometoo large (> 6 fm), leading
to a lack of precisionin the descriptionof the breakupcomponent of the wave
function. This explains the suddenfall of the corresponding wave function
near r = 500 fm in Fig. 4.3.
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Figure 4.3: Modulus of the s1=2 � 1=2 component of the 11Be wave function
after evolution at b= 25 fm and projectile energy72 MeV/n ucleon. Compu-
tations aredoneusingthe distributions depictedin Fig. 4.2. Note the change
of abscissascaleat r = 4 fm.

The samecalculation is performedwith a parameter a = 3 to avoid too
large a step at large distances(dotted line). The drop in the wave function
modulus disappearsand the wave function extendssmoothly till the end of
the radial grid but the radial step is larger than 0.1 fm near r = 0 leading to
a poor description of the bound states. This can be seenin Fig. 4.3 where
the short-rangebehaviour of the wave functions is represented on a larger
scalethan for the rest of the radial interval.

The results obtained with a g2 distribution with a = 5 and x0 = 0:6 are
depictedasfull lines. This distribution allows a good descriptionof the wave
function at both small and large r . A calculation using a = 5 and x0 = 0:8
(dash-dotted lines) illustrates the in
uence of x0 in the g2 distribution. This
distribution exhibits a smaller step near r = 0 than the previous one but
leads to a larger gap between points at large distance. The corresponding
wave function is well described at short distancesbut exhibits a suddendrop
near 600 fm due to too large a step near r N r .

The intervals of acceptablevaluesof the parametersa and x0 seemto be
relatively wide (i.e. a 2 [3; 20] and x0 2 [0:3; 0:7]). Inside these intervals,
the choice of the parameters does not seemsigni�cantly to in
uence the
evolution of the wave function. For the calculationsbelow, we adopt a = 5
and x0 = 0:6.

Num ber of poin ts and extension of the grid

The choice of the other parametersof the radial mesh is made as follows.
Becauseof the time evolution process,the wave function, which is initially a
bound state of the halo nucleus,developsa long-rangebreakup component
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(seeFigs. 4.3, 5.1, and 6.1). This tail evolvesrather quickly towards large r .
Therefore, the last point of the meshr N r has to be chosenso as to ensure
that the wave function doesnot reach the boundary of the mesh. In most of
the cases,rN r could be chosenequal to 800 fm.

As for the number of angular functions, the number of radial-meshpoints
Nr is chosenin order to keep enough accuracy on the values of the cross
section. We have found empirically that choosing r N r =Nr � 1 fm ensures
that the evolution calculation has convergedwith regard to the radial dis-
cretisation. This ratio corresponds approximately to the mean radial step.
The fact that this value is related to the convergenceof the schemeis not
very surprising. It indeedcharacterisesthe point density and sothe accuracy
of the discretisation. Therefore,with a meshextending up to r N r = 800 fm,
we considerNr = 800points for practical calculations.

4.3 Evolution Op erator

In this section,we describe the evolution algorithm we useto solve the time-
dependent Schr•odinger equation.

After de�ning the evolution operator, we developa second-orderapproxi-
mation of this operator. As alreadymentioned, the aim of this approximation
is to split the evolution operator into factors dependingeither upon the pro-
jectile Hamiltonian H0 (3.4) or upon the time-dependent projectile-target
interaction V (3.26). This approximation is then usedto obtain the evolu-
tion algorithm. The last part of this sectionexaminesnumerical aspects of
this algorithm.

4.3.1 De�nition

In quantum physics,the evolution of a systemrepresented by the wave func-
tion 	( t) at time t is described by the time-dependent Schr•odingerequation
(seee.g. [CDL73, Chapter I I I])

i �h
d
dt

	( t) = H (t)	( t) (4.53)

whereH is the Hamiltonian of the system(for simplicity, the spatial depen-
denceof the wave function and the operators is understood).

This equation is linear and preservesthe norm of the wave function. The
time evolution of a systeminitially in state 	( t0) at time t0 can thereforebe
described through the linear and unitary evolution operator U(t; t0) [CDL73,
Appendix F-I I I]:

	( t) = U(t; t0)	( t0): (4.54)

The initial condition implies that

U(t0; t0) = I (4.55)

whereI is the identit y operator.
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Inserting (4.54) in Eq. (4.53) leadsto

i �h
d
dt

U(t; t0) = H (t)U(t; t0): (4.56)

With condition (4.55), this equation completely de�nes the evolution oper-
ator U(t; t0). The calculation of the wave function evolution (4.53) reduces
then to the calculation of the evolution operator (4.56). This helpsbecause
the solution of Eq. (4.56) is given by the Magnus expansion(seeRef. [Wil67,
Sec.8.1]).

In the Magnus expansion,the solution of Eq. (4.56) is expressedas the
exponential of a seriesof operators1:

U(t; t0) = exp[
( t; t0)] (4.57)

where


( t; t0) =
1X

n=1

1
(i �h)n

� n (t; t0): (4.58)

For n = 1, we have

� 1(t; t0) =
Z t

t0

H (t0)dt0; (4.59)

and n = 2 gives

� 2(t; t0) =
1
2

Z t

t0

Z t0

t0

[H (t0); H (t00)] dt00dt0: (4.60)

4.3.2 Second-order appro ximation

Sincethe exact expressionof the evolution operator cannot be obtained in
our problem, we make useof an approximation. In this approximation, the
time interval is divided into steps� t, and the evolution of the wave function
is computed step by step from the initial time t in to the �nal time tout . In
this section, we detail the second-orderapproximation (i.e. with a O(� t3)
error) of the evolution operator we usein our method.

We have seenin Sec.4.1 that the wave function can be expandedonto
two angular bases.The �rst one is composedof the spherical-harmonic-like
functions Y� . In this basis the projectile Hamiltonian representation cH0 is
a band matrix with few o�-diagonal elements. The secondbasisconsistsof
Lagrangefunctions f i . The matrix of the time-dependent potential bV is fully
diagonal in this basis. Therefore, we are looking for an expressionof the
evolution operator in which H0 and V are separated.

From (4.57), (4.59), and (4.60), we seethat the following expressionis a
second-orderapproximation of the evolution operator:

U(t + � t; t) = exp

"

�
i
�h

Z t+� t

t
H (t0)dt0+ O(� t3)

#

: (4.61)

1The solution of Eq. (4.56) canalsobeobtained by the Fer expansionwhich corresponds
to an in�nite product of exponentials of operators. We will not make use of the Fer
expansionhere, and refer the reader to Ref. [Wil67] for more information.



4.3. EVOLUTION OPERATOR 69

Taking (4.1) into account gives

U(t + � t; t) = exp
�

� i
� t
�h

[H0 + W(t)] + O(� t3)
�

(4.62)

where

W(t) =
1

� t

Z t+� t

t
V(t0)dt0: (4.63)

In order to divide the evolution operator into parts that depend only on
either H0 or V, one can make useof the Baker-Campbell-Hausdor� (BCH)
formula (see[Wil67, Sec.4] and [WM62]):

eA eB = exp
�

A + B +
1
2

[A; B ] +
1
12

[A; [A; B ]]

+
1
12

[[A; B ]; B ] +
1
24

[[[B ; A]; A]; B ] + � � �
�

: (4.64)

This hasthe following relationsfor corollaries(seeRefs.[Chin97] and [BGC03])

e�A e�B e�A = exp

(

2�A + �B +
� 3

6
[[A; B ]; A] +

� 3

6
[[A; B ]; B ] + O(� 5)

)

;(4.65)

and

e�A e�B e� �A = exp

(

�B + � 2[A; B ] +
� 3

2
[A; [A; B ]] + O(� 4)

)

: (4.66)

Using (4.65), the evolution-operator approximation reads

U(t + � t; t) = exp
�

� i
� t
2�h

W(t)
�

exp
�

� i
� t
�h

H0

�

� exp
�

� i
� t
2�h

W(t)
�

+ O(� t3): (4.67)

The integral appearing in the expressionof W (4.63) cannot usually be
performed analytically. In order to obtain a consistent approximation, it
must be done using a second-orderformula like the midpoint rule. This
leadsto the evolution operator factorisations

U(t + � t; t) = exp
�

� i
� t
2�h

V(t +
� t
2

)
�

exp
�

� i
� t
�h

H0

�

� exp
�

� i
� t
2�h

V(t +
� t
2

)
�

+ O(� t3): (4.68)

Using a Taylor expansionof V and corollary (4.66), this expressioncan
be rewritten as

U(t + � t; t) = exp
�

� i
� t
2�h

V(t + � t � � � t)
�

exp
�

� i
� t
�h

H0

�

� exp
�

� i
� t
2�h

V(t + � � t)
�

+ O(� t3): (4.69)
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4.3.3 Evolution algorithm

The evolution of the wave function can therefore be computed by applying
iterativ ely the evolution operator to the initial wave function. The structure
of the approximation (4.69)enablesusto groupthe last factor of the evolution
operator at one step with the �rst factor of the next one. After N t time
steps,the wave function is calculatedusingthe following algorithm (choosing
� = 0):

	( tN t ) ' exp
�

� i
� t
2�h

V(tN t )
�

exp
�

� i
� t
�h

H0

�

...

� exp
�

� i
� t
�h

V(t j )
�

exp
�

� i
� t
�h

H0

�

...

� exp
�

� i
� t
�h

V(t1)
�

exp
�

� i
� t
�h

H0

�

� exp
�

� i
� t
2�h

V(t0)
�

	( t0) (4.70)

wheret j = t0 + j � t.
As expressedin (4.69), the error introduced at each step of this scheme

is of the order of � t3. This has to be multiplied by the number of stepsN t ,
which is proportional to � t � 1. The global error of this algorithm is therefore
in � t2.

Apart from the �rst and last ones,the time stepsof algorithm (4.70) are
split in two substeps. In the �rst one the e�ect of H0 on the wave function
is taken into account:

	( t j +
� t
2

) = exp
�

� i
� t
�h

H0

�

	( t j ): (4.71)

This is performedin the spherical-harmonicbasisin which H 0 is represented
by a band matrix (4.50).

In the secondhalf step, the intermediatewave function is modi�ed by the
time-dependent potential:

	( t j +1 ) = exp
�

� i
� t
�h

V(t j )
�

	( t j +
� t
2

): (4.72)

For this substep, the wave function is expressedin the angular Lagrange
basisin which the matrix of the time-dependent potential V is fully diagonal
(4.41).

This algorithm then requiresa changeof basisat each time substep.This
enablesus to solve the time-dependent Schr•odinger equation (4.53) with-
out having to deal with coupledequationsas in the partial wave expansion
method (seeSec.2.3.3). It also allows a fair description of the projectile
nucleusunlike in the Cartesianmeshtechnique. Moreover, the treatment of
the time-dependent potential is rather simplesincethis method only requires
its valuesat meshpoints (see(4.41)).
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With the aim of improving the evolution calculation, we have developeda
fourth-order approximation of the evolution operator [BGC03]. Its expression
and the corresponding algorithm are described in Appendix E.

4.3.4 Appro ximation of exp onential operators

In Secs.4.1.4and 4.2.2,we have seenthat the useof both the Lagrangean-
gular basisand the quasiuniform radial grid leadsto a completely diagonal
representation bV of the time-dependent potential (4.41). The calculation of
the exponentials of operator V appearing in (4.70) is therefore straightfor-
ward andcanbeperformedexactly. In this basis,their matrix representations
are diagonal. The resolution of Eq. (4.72) is thus both easyand fast:

	 (t j +1 ) = exp
�

� i
� t
�h

bV(t j )
�

	 (t j +
� t
2

): (4.73)

In this expression,	 (t) is the vector representing the wave function at time
t. It comprisesthe components of the wave function in the Lagrangebasis
(4.31) discretisedover the quasiuniform radial mesh.

The caseof the exponentials of the unperturbed Hamiltonian H 0 is less
trivial. Indeed, we have seenin Secs.4.1.4 and 4.2.2 that the spin depen-
denceof H0 (4.34) and the �nite-di�erence approximation of the di�eren tial
operator (4.48) lead to a band-matrix representation of H 0 in the spherical-
harmonic basis(4.50).

Pad�e appro ximation

The problem of calculating the exponential of H0 reducesthen to the calcu-
lation of the exponential of its band matrix representation cH0 (4.50). Unfor-
tunately, the exponential of a band matrix is no longer a band matrix. This
can be a problem if, as is the casehere, the dimensionsof the matrix are
large. In order to preserve the band structure of cH0 asmuch aspossible,we
make useof a Pad�e approximation [MVL78].

The (p;q) Pad�e approximation is de�ned as follows

e�A = Rpq(�A ) + O(� (p+ q+1) ) (4.74)

where

Rpq(A) = [Nqp(� A)]� 1Npq(A) (4.75)

with

Npq(A) =
pX

j =0

(p + q � j )!p!
(p + q)!j !(p � j )!

A j : (4.76)

(4.77)

We know that the power of a band matrix exhibits a band structure with
a bandwidth increasing with the exponent. It is therefore important for



72 CHAPTER 4. SOLVING THE TDSE

storagereasonsto usediagonalapproximants (p = q). At a given order these
are the approximations that usethe lowest powersof the matrix.

In order to develop a consistent algorithm, we have to chooseapprox-
imations of the sameorder as that of the evolution operator. Taking the
precedingremark into account, we make useof the (1; 1) Pad�e approximant
for the second-orderalgorithm (4.70). It reads

R11(A) =
�

1 �
1
2

A
� � 1 �

1 +
1
2

A
�

: (4.78)

Using this approximation, the exponential of cH0 appearing in (4.71) can
be approximated by

exp
�

� i
� t
�h

cH0

�

=
�

1 + i
� t
2�h

cH0

� � 1 �

1 � i
� t
2�h

cH0

�

+ O(� t3): (4.79)

This expressionmerely consistsof the product of two matrices. One of them
exhibits the sameband structure as cH0, while the other is the inverseof such
a matrix. Since the inverseof a band matrix is no longer a band matrix,
this (1; 1) approximant should not be computed explicitly. Nevertheless,it
enablesus to rewrite the time substep(4.71) as

�

1 + i
� t
2�h

cH0

�
�	 (t j +

� t
2

) =
�

1 � i
� t
2�h

cH0

�
�	 (t j ); (4.80)

where �	 (t) is the vector representing the wave function at time t in the
spherical-harmonicbasis. It comprisesthe components of the wave function
(4.28) discretisedover the quasiuniform radial mesh. Therefore Eq. (4.80)
corresponds to a set of linear equations.

This meansthat we do not needthe matrix of the Pad�e approximation
(4.79). Instead, we are looking for an economicalway of solving a set of
linear equationswith a band matrix.

LU decomp osition

The idea is to use a LU decomposition (seeRefs. [PFTV86, Sec.2.3] and
[Jen77, Chapter 4]) of the matrix we have to invert. In a LU decomposition,
a matrix A is factorisedinto the product of a lower triangular matrix L and
an upper triangular matrix U:

A = L � U: (4.81)

It can be shown that the LU decomposition of a band matrix has a band
structure with the samebandwidth. Its storageis thus economicalin com-
parison with that of the completeinversematrix.

Moreover the inversion of a LU decomposedmatrix is straightforward
[PFTV86, Sec.2.3]. It is alsoeconomicalfrom a computational point of view
for it requires approximately the same number of operations as a simple
multiplication of a vector by a band matrix.
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This LU decomposition is the samethroughout the entire calculationsince
H0 is not time-dependent. Thereforeit has to be calculatedonly once,prior
to the evolution calculation.

The way we perform the LU decomposition is similar to the Crout's al-
gorithm detailed in [PFTV86, Sec.2.3]. The major di�erence with this algo-
rithm is that we do not proceedto pivoting. The matrix to be decomposed
is neither hermitian positive de�nite nor diagonally dominant. We should
thereforemake a pivot selection(see[Jen77, Sec.4.6]).

However, proceedingto pivoting would strongly a�ect the band structure
of the matriceswearedealingwith. It shouldthereforebeavoidedif possible.
Moreover, the diagonal elements of cH0 are larger than the o�-diagonal ones
in module. This seemsto indicate that the pivot selectionis not necessary. In
order to check the stabilit y of the method, we verify beforeeach calculation
that the product of the lower and upper triangular matrices is equal to the
initial one within acceptableaccuracy. Up to now, the maximal error has
never exceeded10� 15 of the correspondingelement. Moreover, the error made
on elements equal to zero has always beenlower than 10� 13, and is usually
of the order of 10� 16. This is satisfactory for it is of the order of the roundo�
error of our computer.

4.3.5 Unitarit y of the appro ximation

We have seenin Sec.4.3.1 that the evolution operator (4.54) is unitary. It
thereforepreservesthe norm of the wave function. Doesour approximation
exhibit the sameproperty?

The approximation of the evolution operator (4.69) is factorised into a
product of exponentials of hermitian operators. Therefore it should be uni-
tary. As previously mentioned, the exponentials of the time-dependent po-
tential aretreated exactly. Therefore,they areunitary and preserve the norm
of the wave function but for the roundo� errors.

For numerical reasonsexplainedabove, the exponential of H0 is approx-
imated by Pad�e approximant (4.78). If cH0 were symmetric, this Pad�e ap-
proximation would be unitary. This would be the caseif we were using a
uniform radial grid, for example. But, as seenin Sec.4.2.2, we usea qua-
siuniform grid that leads to an asymmetric matrix. The approximation of
the exponential operator is thereforenot unitary and the norm of the wave
function not preserved.

However, we have seenin Sec.4.2.2that cH0 becomesapproximately sym-
metric if the number of radial points N r is high enough. The samee�ect is
observed here: the norm of the wave function is approximately preserved,
the higher Nr , the better the norm conservation. We refer the reader to
Appendix D for a detailed study of this approximate unitarit y.

4.3.6 Numerical aspects

This sectionexaminesthe numericalaspectsof the time-evolution algorithm.
Firstly, wedescribe the way weselectthe parametersof the time mesh(initial
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t in and �nal tout times, and time step � t). Secondly, we check the accuracy
of the implementation of our algorithm by testing its reversibility.

Time in terv al and time step

The time-evolution algorithm presented hereenablesus to computethe wave
function at any time t starting from a given wave function at initial time t in .

In the study of the Coulomb breakup, the nucleusis assumedto be ini-
tially in its ground state, far away from the target. Therefore, t in has to
be chosensu�cien tly negative sothat the projectile-target interaction is ini-
tially negligible (the time t = 0 corresponds to the projectile-target closest
approach). The calculation of the evolution is performedstep by step until
a �nal time tout . It hasto be su�cien tly positive sothat the time-dependent
potential can be consideredas negligibleat the end of the calculation.

As for the numerical parametersof the angular and radial meshes(see
Secs.4.1.5and 4.2.3), the time interval [t in ; tout ] is chosenwith respect to the
convergenceof the total breakup crosssection(3.39). We have found that a
time interval starting at t in = � 20 �h/MeV and endingat tout = 20 �h/MeV is
usually su�cien t for the calculation of the breakup crosssection. According
to the sametests, a time step of � t = 0:02 �h/MeV is suitable for most of
the calculations.

The above mentioned valuesof t in and tout are chosento ensurethe con-
vergenceof the total crosssection,i.e. integratedover all impact parameters.
However, the convergenceof the schemewith regard to the time interval is
not the samefor all impact parameters. It is indeedslower for high impact
parameters. A wider time interval should therefore be chosen if accurate
results were neededfor one particular tra jectory at high impact parameter.
In Appendix F, we analysethe error madeon the breakupprobability (3.38)
due to the truncation of the time interval. We deducefrom that study a
rough estimate of the time interval neededto ensurethe convergenceof the
schemefor distant tra jectories.

Reversibilit y of the algorithm

One way of testing the accuracyof the implementation of the time-evolution
algorithm is to check its reversibility. From its expression(4.70), we can
seethat the time-evolution algorithm is exactly reversible. Therefore, any
correct implementation of this algorithm should be reversibleas well.

We have performeda time-reversedcalculation in which the initial wave
function was the output function at time tout of a normal evolution. The
initial time has been set equal to tout and the time step was chosenequal
to � � t. After the samenumber N t of time steps, the �nal wave function
of the time-backward evolution was comparedwith the initial ground-state
wave function of the time-forward calculation. The results of this test were
astonishinglygood: the di�erence betweenboth functionswaslessthan 10� 13

at any meshpoint. This meansthat our implementation of the time-evolution
algorithm detailed in Sec.4.3.2 is reversiblebut for the roundo� errors.



Chapter 5

A well known one-neutron halo
nucleus: 11Be

We have seenin Chapter 1 that 11Be is, up to now, the best known one-
neutron halo nucleus. Many studies have indeed con�rmed the presenceof
a one-neutronhalo in 11Be [Fuk91, Kel95, Oza01]. This nucleusis thus seen
as a 10Be core to which a neutron is looselybound. Moreover, the Coulomb
breakupof 11Be on 208Pb hasbeenstudiedexperimentally in the energyrange
of our model [Nak94, Nak03]. Therefore,this nucleusconstitutes the perfect
casefor a �rst analysisof our theoretical method.

In this chapter we present and analysethe main results of our study of
the 11Be breakup on 208Pb. It is divided into two sections. In the �rst one,
we describe the 11Be nucleusand give the parametersof the 10Be-neutron
potential we useto model this nucleus. We also detail the parametrisations
of the optical potentials used to simulate the nuclear interaction between
208Pb and 11Be. In the secondsection we actually present and discussthe
results obtained with the method described in Chapters3 and 4.

5.1 Theoretical mo del

5.1.1 Description of 11Be

As mentioned in Chapter 3, halo nuclei are depicted in our model as two-
body structures: a pointlik e fragment looselybound to a pointlik e core. In
the caseof 11Be, the former is a neutron with spin I = 1

2 while the latter is
assumedto consistof a pointlik e 10Be in its 0+ ground state.

The bound spectrum of 11Be consistsonly of a 1
2

+ ground state and a
1
2

� excited state [Ajz90]. The experimental valuesof the energiesof those
states relatively to the one-neutronseparation threshold are reproduced in
the left-hand part of Table 5.1.

Using our two-body model, thesestates correspond to nl j = 1s1=2 and
0p1=2 orbits respectively (seeSec.3.1). In a usual shell model [Law80], this
meansthat the ground state is seenas an sd intruder in the p shell. We
describe this inversionusingan l-dependent potential. In order to reproduce
the 11Be bound spectrum, we usethe 10Be-neutron potential of Ref. [MB99]

75
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J � Eexp (MeV) nl j E th (MeV)
1
2

+ -0.503 1s1=2 -0.5013
1
2

� -0.183 0p1=2 -0.1844

Table 5.1: Experimental energies(Eexp) and quantum numbers J � of the
11Be bound states [Ajz90] (left-hand side). The theoretical energies(E th )
and quantum numbersnl j of the corresponding bound statesobtained with
the parametersof Table 5.2 are also listed (right-hand side). The two Pauli-
forbidden states obtained with this potential are: a 0s1=2 at -31.074MeV,
and a 0p3=2 at -4.340MeV.

Vl=0 (MeV) Vl> 0 (MeV) VLS (MeV fm2) a (fm) R0 (MeV)

59.5 40.5 32.8 0.6 2.669

Table 5.2: Parametersof the 10Be-n potential (seeSec.3.1.1for the detailed
expressionof the parametrisation).

(adapted form Ref. [KYS96]). The valuesof the corresponding parameters
of the Vcf form factor detailed in Sec.3.1.1are given in Table 5.2.

The energylevelsof the physicalboundstatesobtainedwith this potential
aredisplayed in the right-hand part of Table5.1. This potential leadsalsoto
two forbidden bound states. As explainedin Sec.3.1.1,thesestatessimulate
the orbitals occupiedby the neutronsin the 10Becore. The quantum numbers
and binding energiesof thesestatesare given in the caption of the table.

In order to check the abilit y of such a simple model to describe the halo
structure of 11Be, we calculate the root-mean-squaredistance between the
core and the halo neutron in the 1s1=2 ground state obtained with the Vcf

potential detailed in Table 5.2. This value is equal to 7.035fm. Moreover,
the probability of presenceof the neutron beyond the classicalturning point
is about 46%. This meansthat this simple two-body model, reproducing
the low binding energiesof the system, leads to a structure in which the
neutron has a high probability of presenceoutside the nuclear-interaction
range. The above statements fully agreewith the de�nition of halo states
given in Sec.1.1. Hence,it seemsthat the halo structure of 11Be is rather
well reproducedin our model.

5.1.2 Pro jectile-target poten tials

We have seenin Chapter 4 that this method enablesus to useoptical poten-
tials to describe the nuclear interaction betweenthe target and the projectile
fragments. In this section,we give the valuesof the parametersappearing in
the expressionof potential VxT detailed in Sec.3.2.

In order to compareour resultswith the new experimental data obtained
by Nakamura et al. [Nak03], those potentials are chosenaccordingto their
experimental conditions: the target we consideris a 208Pb nucleus;the initial
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c or f V W RR RI aR aI RC
10Be (1) 70.0 58.9 7.43 7.19 1.040 1.000 5.92
10Be (2) 53.6 49.4 7.89 7.69 0.954 0.887 5.92
n 29.46 13.4 6.93 7.47 0.75 0.58 -

Table 5.3: Parametersof the n-208Pb [BG69] and 10Be-208Pb [Bon85] optical
potentials. (seeSec.3.2 for the detailed expressionof the parametrisation).
Depths are expressedin MeV while radii and di�usenessesare in fm. As
WD = 0 in all cases,the valuesWD , RD and aD are not displayed.

kinetic energyof the projectile is set equal to 68A MeV1.
The n-208Pb interaction is modeled using the Becchetti and Greenlees

parametrisation [BG69] with an energyof 68 MeV.
Sincewe could not �nd any optical potential describing the 10Be-208Pb

interaction, we follow Typel and Shyam [TS01b] by using an adaptation of
the potentials proposedby Bonin et al. in Ref. [Bon85]. Thesepotentials
wereconstructedto reproducethe elastic-scatteringcrosssectionsmeasured
for � particles on a 208Pb target. These scattering experiments were con-
ducted at di�eren t energies,and for each energy they derived three equiv-
alent parametrisations. In order to tally as much as possiblewith the ex-
perimental conditions of the RIKEN experiment [Nak03], we use only the
parametrisationsobtained for 699 MeV � s. With the aim of analysing the
in
uence of the potential choice upon our calculations, we consider two of
their parametrisations.

In order to take into account the fact that wearedealingwith 10Be projec-
tiles and not � particles,wehave increasedthe radii RR and RI they propose.
This hasbeendoneby multiplying the reducedradii of their parametrisation
by (101=3 + 2081=3) instead of (41=3 + 2081=3) usedfor � particles. The other
parametershave beenkept unchanged.

The valuesof the corresponding parametersare displayed in Table 5.3.
Sinceneither the Becchetti and Greenleesparametrisation nor that of Bonin
et al. include a surfaceterm in the imaginary potential (i.e. WD = 0 in both
cases),the valuesWD , RD and aD are not displayed in Table 5.3.

5.2 Evolution calculation

This section examinesthe results we have obtained with our model. After
an illustration of the time evolution of the wave function, we compareour
method with the �rst-order perturbation theory (seeSec.3.4.3). For this, we
mainly focuson the breakupcrosssectionsinceit correspondsto the process
wearestudying. However, in order to completethis analysis,wealsoconsider
the inelastic excitation crosssection in this comparison. We then compare
the breakup crosssection computed from our evolution calculation output
with the experimental onesmeasuredby Nakamura et al. [Nak94, Nak03].

1This standard notation usedin the following corresponds to 68 MeV per nucleon.
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The comparisonwith experiment of the inelastic crosssection is performed
using the value measuredin another experiment [Nak97]. After that, we
analysethe in
uence of several aspectsof our model upon both the breakup
and the inelastic crosssections. These aspects comprise the choice of the
projectile-target optical potential, the choiceof the tra jectory (hyperbola vs
straight line), and the presenceof the Pauli forbidden states.

5.2.1 Time evolution of the pro jectile wave function

In order to illustrate the time evolution of the wave function, we present the
result of a calculation performed for a 11Be projectile on a 208Pb target at
an impact parameterequal to 30 fm and an initial velocity v = 0:36c. This
velocity corresponds to the 68A MeV kinetic energyof the 11Be beam used
by Nakamura et al. in Ref. [Nak03]. Fig. 5.1 displays the results of that
calculation for an initial wave function 	( r ; t in ) corresponding to the ground
state � 1s1=2� 1=2(r ) (i.e. with m0 = � 1=2). The time-dependent wavefunction
is projected onto three di�eren t spin-angularstates. The �rst correspondsto
that of the initial bound state (s1=2� 1=2), the secondto that of the excited
state (p1=2 � 1=2) and the third to the most signi�cant contribution to the
breakup component (p3=2 � 3=2). The wave function is depicted at times t
from t in = � 20 �h/MeV to tout = 20 �h/MeV at intervals of 5 �h/MeV.

At time t in , the halo nucleusis in its ground state with only a s1=2� 1=2
component which exhibits a characteristic exponential decrease. At later
negative times, causality restricts modi�cations of the wave function induced
by the projectile-target interaction to large r values. Indeed, for s1=2 � 1=2,
only the distant tail of the wave packet is a�ected. Both the p1=2� 1=2 and
p3=2� 3=2 wavesremainnegligibleat negative times. Near the time of closest
approach t = 0, the partial wave functions start to changemoredeeply: some
parts increaseby several orders of magnitude. The modi�cations mainly
correspond to the breakup component.

We alsonote the appearanceof a small peaknear the origin in the p1=2�
1=2 wave. This peakcorrespondsto the 0p1=2 excitedstate of the 11Be. This
illustrates that during its interaction with the target, the projectile undergoes
both breakup and excitation. A similar peak, though lesssigni�cant, is also
observed in the p3=2 � 3=2 partial wave. It corresponds to the 0p3=2 Pauli
forbidden state. Its presenceindicates that, like the physical excited state,
forbidden states are also populated during the collision. The in
uence of
these unphysical states upon the evolution calculation will be studied in
Sec.5.2.7. The p3=2 � 3=2 wave becomesdominant at large distances.

At positive times, the breakupcomponent developsquickly towards large
r in all partial waves. It continuesto spreadas the wave packet evolves. In
spite of this ongoingspreading,the low-energybreakup crosssectionsreach
convergencenear tout . As mentioned in Sec.4.2.3, we seethat due to this
spreading,the last point of the meshr N r must be chosenaccordingto tout to
ensurethat the wave function doesnot reach the boundary of the mesh.
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Figure 5.1: Time evolution of the moduli of the s1=2 � 1=2 (a), p1=2 � 1=2
(b) and p3=2 � 3=2 (c) partial wavesof the 11Be breakup obtained with an
initial 1s1=2 � 1=2 bound state for v = 0:36c and b= 30 fm.
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5.2.2 Comparison with the �rst-order appro ximation

In this section,we comparethe results of our model to thoseobtained from
a �rst-order approximation in which only the E1 multip ole of the projectile-
target interaction is taken into account. As seenin Sec.3.4.3, the accuracy
of this approximation increaseswith the impact parameterb and the initial
relative velocity v between the projectile and the target. Therefore, this
comparisonprovides us a test of the accuracyof our scheme.

For this comparison,we perform evolution calculationsfor a 11Be projec-
tile and a 208Pb target at di�eren t velocities (v = 0:25c, 0:3c, and 0:35c) and
di�eren t impact parameters(b = 40 fm, 60 fm, 80 fm, and 100 fm). Since
the nuclear interaction between the projectile and the target is completely
negligible for those values of b (seeSec.5.2.5), the potential between the
target and the projectile fragments is assumedto be purely Coulombic. The
calculations are performed using straight-line tra jectories for modelling the
projectile-target relative motion. Using those two assumptions,the results
obtained with our model can be comparedwith the formulae developed in
Sec.3.4.3.

Fig. 5.2 illustrates the comparisonbetweenthe breakup probability
dPbu=dE (3.38) computed with the output of our evolution calculation and
the value dPE 1

bu =dE (3.67) obtained at the �rst-order approximation. This
�gure displays the ratio betweendPbu=dE and dPE 1

bu =dE asa function of the
energy. We seethat for each velocity, this ratio seemsto convergeat high
impact parameters. The curve towards which it convergesis an increasing
function of the energy. It seemsto tend towards the constant 1 at high
velocities. This behaviour is logical since the accuracy of the �rst-order
approximation increasesat high impact parametersand high velocities. This
convergenceseemsin a closeagreement with a similar analysis performed
by Typel and Baur [TB01] on the breakup of 19C on a 208Pb target (see
Sec.I I I and Fig. 2 of that reference).However, this convergenceis very slow
in comparisonwith other caseswherethis analysishasbeenmade[MB01].

In order to understand this discrepancy, let us have a look at the con-
tributions of the di�eren t partial waves to the breakup probability. From
(3.67), we seethat if the �rst-order approximation were exact, the breakup
probability would be due solely to the p components of the �nal wave func-
tion. In Fig. 5.3 we have reproduced the contributions of the s, p and d
partial waves to the breakup probability at impact parameter b = 100 fm
for the three velocities consideredabove. The contribution of the f waves
are not displayed since they contribute to the breakup probability for less
than 3%. As in Fig. 5.2, the valuesare scaledby the probability dPE 1

bu =dE
calculatedat the �rst-order approximation.

We seethat the contribution of the p waves is indeed the major one.
However, those of s and d waves are not negligible even at high velocities.
This may have two explanations. The �rst one is that the approximation
of the projectile-target potential by its �rst multip ole might be not valid
here. In other words, other multip olesmay play a signi�cant role. However,
this would not account for the signi�cant s-wave contribution observed in
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Figure 5.2: Comparisonof our calculation with the �rst-order perturbation
theory. Ratio (dPbu=dE)=(dPE 1

bu =dE) of the breakup probability obtained
with our model (3.38) to that calculated with a �rst-order approximation
using a pure E1 Coulomb potential (3.67) as a function of the energy. The
calculation is performedat di�eren t velocities v and impact parametersb.
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Figure 5.3: Contributions of the s, p, and d wavesto the breakupprobability
dPbu=dE calculatedat b= 100fm for three di�eren t velocities v. The values
are scaledby dPE 1

bu =dE.

Fig. 5.3. The secondexplanation is that higher ordersmight still be signi�-
cant, although we considerhigh impact parametersand high velocities.

In order to disentangle thesetwo e�ects, we perform a similar calculation
usingonly the E1 multip oleof the time-dependent potential. Wethusreplace
the time-dependent potential V (3.26) appearingin the Schr•odingerequation
by the following expression(�rst term of the multip ole expansion(3.59))

VE 1(t) =
ZT e2

4� � 0

�

Z f
Ac

AP
� Zc

A f

AP

� r � R
R(t)3

: (5.1)

Thesecalculations are worked out for an impact parameter b = 100 fm at
the samevelocities as in the previous tests. The results are displayed in
Fig. 5.4. They do not di�er signi�cantly from thoseobtained with the actual
time-dependent potential V (seeFig. 5.3).

This indicatesthat the approximation of V by its �rst multip ole is rather
accurate for those distant tra jectories. This suggeststhat the discrepancy
betweenour calculation and the �rst-order calculation is due to higher-order
terms of the perturbation theory. Among them, the major oneis most likely
the second-orderE1-E1 term as suggestedin Ref. [TB01]. It corresponds
to two successive E1 excitations. The �rst one excites the neutron from
its initial 1s1=2 bound state to a p wave in the continuum. The second
transition, allows the s and d wavesto be populated. This would explain the
relatively high contributions of thosewaves.

In order to investigate further in that direction, it would be interesting
to perform an evolution calculation in which the coupling betweenthe con-
tinuum states is switched o�. Unfortunately, our model doesnot enableus
to do so. The method usedby Typel and Baur [TB01] seemsto allow the
evolution calculation to be performedusing only the �rst-order terms of the
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Figure 5.4: Contributions of the s, p, and d wavesto the breakupprobability
dPbu=dE calculatedat b= 100fm for three di�eren t velocities v considering
solely the E1 multip ole of the projectile-target potential. The values are
scaledby dPE 1

bu =dE.

b= 40 fm b= 60 fm b= 80 fm b= 100 fm

P0p1=2 2.67410� 3 1.17810� 3 6.38510� 4 3.86810� 4

PE 1
0p1=2 2.708 � 3 1.18310� 3 6.40010� 4 3.87310� 4

Table 5.4: Comparisonbetweenthe excitation probability obtained with our
method P0p1=2 and its �rst-order approximation PE 1

0p1=2.

potential (i.e. they canswitch o� the couplingpotentials betweenthe partial
waves). Therefore, this method would enableone to know whether or not
the second-orderterms play a signi�cant role in thesebreakup calculations.

With the aim of completing this study, we also comparethe excitation
probabilities P0p1=2 (3.40) obtained from our evolution calculationswith the
probabilities PE 1

0p1=2 (3.57) computed in the �rst-order approximation. Since
only E1 transitions are allowed between the 1s1=2 ground state and the
0p1=2 excited state of 11Be (see(3.62) with l0 = 0 and l = 1), the restriction
to the �rst multip ole is not an approximation in this case.

The results of this comparisonare displayed in Table 5.4 where we give
the value of P0p1=2 and PE 1

0p1=2 at v = 0:35c for di�eren t impact parameters.
The probability obtained from our calculations tends towards its �rst-order
approximation with a great accuracy at high impact parameters (at b =
100 fm their relative di�erence in only 10� 3).

This very good agreement betweenour model and the �rst-order pertur-
bation theory contrasts with the results we have obtained for the breakup
probability. This di�erence betweenboth analysesis seenas resulting from
the smallerin
uence of the higherordersin the excitation processthan in the
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breakupreaction. The coupling of the excitedstate with other eigenstatesof
the projectile Hamiltonian is indeedlessprobable than for scattering states.
This indicates that neglectinghigher-orderterms is more relevant herethan
in the calculation of the breakup probabilities. Therefore, the discrepancy
we have observed betweenour model and the �rst-order perturbation theory
in the analysisof the breakupprobabilities is most likely due to the presence
of thosehigher-orderterms. It seemsthen that the 11Be breakup is a rather
complex processwhich cannot be accurately described using the �rst-order
approximation.

In this study, we have thus shown that the di�erence betweenour model
and the �rst-order approximation logically decreasesat high velocities and
high impact parameters. However, it seemsthat the contributions of both
s and d wavesto the breakup probabilities remainssigni�cant even at high
impact parametersand high velocities. The comparisonbetweenP0p1=2 and
PE 1

0p1=2 shows that the �rst-order approximation givesvaluesof the inelastic
probabilities very similar to ours for distant tra jectories. This suggeststhat
the high population of s and d scattering wavesmight be the sign of a sub-
stantial coupling in the continuum. Since this e�ect is rather unusual, it
might be seenas a signatureof the halo structure of the projectile.

5.2.3 Conditions of the calculation

The Coulomb breakup of 11Be has been studied experimentally in 1994at
RIKEN [Nak94]. In that experiment, Nakamura et al. measuredthe breakup
crosssectionof a 72A MeV 11Be projectile on a 208Pb target. Recently, they
remeasuredthis dissociation at 68A MeV. Thesedata are not publishedyet
but preliminary results are available in the proceedingsof a 2002conference
[Nak03].

With the aim of comparing our model to this new experiment, we have
performeda time-evolution calculation of this reaction using the method de-
scribed in Chapters 3 and 4. The 11Be projectile is modeled with the Vcf

potential described in Sec.5.1.1. The 11Be-208Pb interaction is represented
using the optical potentials detailed in Sec.5.1.2. For this calculation, the
�rst parametrisationof the 10Be-208Pb optical potential is used(the sensitiv-
it y of the results of our calculation to the choice of theseoptical potentials
will be analysedin Sec.5.2.5). The tra jectory followed by the target in the
projectile rest frame is assumedto be a straight line Sec.3.3 (seeSec.5.2.6
for a discussionof this assumption). The initial relative velocity betweenthe
projectile and the target is chosenequal to v = 0:36c which corresponds to
the kinetic energyof 68A MeV consideredin [Nak03]. This value has been
obtained using the relativistic formula

v
c

=

s

1 �
1

(1 + Ti =AP mN c2)2
; (5.2)

whereTi is the initial kinetic energyof the projectile. Finally, the presence
of the Pauli forbidden states in the core-fragment potential is neglectedas
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b< 30 30 < b< 100 100< b< 200 200< b< 300

hb 1 1 2 4

N � , N ' 6, 11 3, 5 3, 5 3, 5

rN r , Nr 800,1000 800,800 600,600 400,400

Table 5.5: Valuesof the numerical parametersusedin the calculation of the
11Be breakup on 208Pb with an initial velocity v = 0:36c which corresponds
to the 68A MeV energyof experiment [Nak03]. (b, hb, and rN r are expressed
in fm).

suggestedin our previousstudy [CBM03a] (the in
uence of thesestatesupon
the breakup crosssectionwill be analysedin Sec.5.2.7).

In order to ensurethe convergenceof the scheme, the calculations are
performedfor the tra jectoriescorresponding to impact parametersbbetween
8 fm an 300 fm. Since the amplitude of the projectile-target interaction
decreaseswith increasingb, somenumericalparametersof the algorithm vary
throughout the impact-parameter range. Thoseparametersare gatheredin
Table 5.5. The impact-parameterstep hb has to be chosensu�cien tly small
at low impact parameterswhere the results vary strongly with b. However,
at higher impact parameter,hb can be chosenlarger.

At impact parameters lower than 30 fm, the nuclear interaction plays
a signi�cant role (seeSec.5.2.5). Sincethis interaction varies rapidly with
both the angular and the radial variables,its accuratedescription requiresa
rather high number of points. Therefore, the numbers of functions N � and
N ' in the angular bases(seeSec.4.1) have to be chosenhigh enough to
ensurethe convergenceof the scheme. Above b = 30 fm, the interaction is
purely Coulombic, thereforeN � and N ' can be reduced.

We have seenin Sec.5.2.1 that due to the interaction with the target,
the projectile wave-function developsa tail which extendsrather quickly at
large distances. The magnitude of this tail dependsupon the amplitude of
the projectile-target interaction. An analysis of the evolution of the wave
function shows us that for a �xed time interval, the larger the impact pa-
rameter, the smaller the rangeof this tail. The extensionof the radial mesh
can thereforebe reducedat higher impact parameters.The number of radial
points Nr is chosensothat rN r =Nr � 1 fm asexplainedin Sec.4.2.3(a larger
value of Nr is used where the rapidly varying optical potentials are taken
into account, i.e. for b< 30 fm).

The other numerical parametersdo not vary with b. As seenin Sec.4.2,
the wave function is discretisedover the quasiuniform meshobtained with
the g2 distribution using a = 5 and x0 = 0:6. Following the discussionin
Sec.4.3.6,the time interval chosenequalto [-20 �h/MeV, 20 �h/MeV], and the
time step is �xed to � t = 0:02 �h/MeV.

The convergenceof the schemewejust mentioned, is illustrated in Figs.5.5
and 5.6. In the �rst �gure, the breakupprobabilities computedwith di�eren t
valuesof N � and N ' are represented as a function of the energy. They are
obtained from evolution calculations performed at b = 15 fm. We seethat



86 CHAPTER 5. 11Be

the results vary widely for low valuesof N � and N ' . The calculation seems
to slowly convergeto the referencecalculation using N � = 8 and N ' = 15.
We have chosento useN � = 6 and N ' = 11 for practical calculations. The
results obtained using these values are indeed rather closeto those of the
referencecalculation (only 1% di�erence in the peak and lessthan 10% at
2 MeV). Moreover, the computational time is divided by three when those
valuesare usedinstead of N � = 8 and N ' = 15.

N ' = 15
N ' = 13
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Figure 5.5: Convergenceof the evolution calculation with respect to the
number of angular-basisfunctions. The breakup probability computed at
v = 0:36c and b = 15 fm is displayed for several valuesof N ' (with N � =
(N ' + 1)=2, seeSec.4.1.5).

Fig. 5.6 illustrates the convergenceof the scheme with respect to the
impact-parameter interval we consider. It displays the contribution to the
total breakup crosssectionof each of the impact-parameter intervals of Ta-
ble 5.5. For comparison,the total breakup crosssection is pictured as well.
The �rst and secondintervals (i.e. for b < 100 fm) constitute the major
contribution to the breakup cross section. From the small amplitudes of
the contributions of the other two intervals, we seethat the calculation has
indeedconvergedat b= 300 fm.
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Figure 5.6: Convergenceof the evolution calculation with respect to the
impact parameter upper bound. The total breakup crosssectionas well as
the contributions of each of the b intervals of Table 5.5 are represented.
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Figure 5.7: Breakup crosssection(in b/MeV) of 11Be on 208Pb at 68A MeV
as a function of the energy. The results of our calculation are plotted as a
full line (total crosssection)and a dashedline (b> 30 fm). The preliminary
experimental data of [Nak03] are represented by the open diamonds (total
crosssection) and open circles (b > 30 fm). The full circles correspond to
the data of [Nak94] multiplied by 0.85 [Nak03a].

5.2.4 Comparison with the exp erimen t

The results of our calculation (full line) are presented in Fig. 5.7, wherethe
breakup crosssectionis plotted as a function of the relative energybetween
the coreand the fragment after dissociation. In this �gure, the experimental
data of [Nak03] aredisplayedwith opendiamonds. Wealsoplot the resultsof
the former experiment [Nak94]. Thesevalues,represented by the full circles
have beenscaledby a factor 0.85suggestedby Nakamura after a reanalysis
of this experiment [Nak03a].

Our theoretical results agreefairly well with the experimental data from
both experiments. The main energydependenceof the crosssectionis indeed
well reproduced. However, the slight increasethat both setsof experimental
data seemto exhibit near 1 MeV is not reproduced by our model. Our
calculatedcrosssectionis in very good agreement with the resultsof [Nak94]
at low energy. It seemsto disagreewith the preliminary resultsof [Nak03] at
the sameenergies.However, thesenew results are in disagreement with the
former ones.The explanation of this discrepancybetweenboth experiments
hasto wait for the �nal analysisand the publication of the newRIKEN data.

In Fig. 5.7 we have also pictured the crosssection we obtain consider-
ing only the tra jectories with an impact parameter above 30 fm. This has
been done to compareour results to the corresponding measuredbreakup
crosssection represented by open circles [Nak03]2. We seethat our calcu-

2In the analysis of their measurements, Nakamura et al. assumedthe projectile to
follow a Rutherford tra jectory. The impact parameter is thus related to the scattering
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lated breakup crosssection is in very good agreement with the preliminary
experimental data above 0.5 MeV. However, as in the caseof the total cross
section,a discrepancyexists betweenexperiment and theory at low energy.

From this analysis,we seethat the results of our calculation agreefairly
well with the experimental data. As mentioned in Sec.5.1.1, theseresults
are obtained by describingthe 11Be projectile asa 10Be corein its 0+ ground
state to which a looselybound s1=2 neutron is bound. This suggeststhat this
con�guration is dominant in the structure of 11Be, and that the corresponding
spectroscopicfactor should be closeto unity.

However, Nakamura et al. have inferred from the preliminary analysisof
their measurements at b > 30 fm a spectroscopicfactor equal to 0:69� 0:04
[Nak03, Nak03b]. This value hasbeenobtained comparingthe experimental
data with a �rst-order calculation. This meansthat they assumedthat at
theseimpact parametersboth nuclearand higher-ordere�ects are negligible.
In order to check the validit y of this assumption,we calculate the breakup
crosssectionwith an impact parameter cuto� bmin = 30 fm using the �rst-
order formula (3.68). This crosssectionis displayed in Fig. 5.8 (dotted line).
For comparison,the valueobtainedfrom our evolution calculation is pictured
as well (dashedline). Both results agreefairly well. This suggeststhat the
�rst-order assumptionmadeby Nakamura et al. is justi�ed.

Exp. [Nak03] b> 30 fm
0:69� First-order

First-order
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Figure 5.8: Comparisonbetweenthe evolution calculation (dashedline) and
the �rst-order approximation (dotted line) for b > 30 fm. The latter is also
represented multiplied by the spectroscopicfactor 0.69 obtained by Naka-
mura et al. from the analysis of their experiment [Nak03, Nak03b] (dash-
dotted line). For comparisontheseexperimental data are plotted as well.

However, we seethat when multiplied by the 0.69 spectroscopicfactor,
the �rst-order calculation fails to reproduce the experimental crosssection
(seedash-dottedline in Fig. 5.8). This is most likely due to the fact that the

angle of the centre of massof the 10Be+n system through relation (3.31).
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theoretical values displayed here are not convoluted with the instrumental
response. Therefore, the extraction of the spectroscopic factor from our
calculationswill have to wait for the publication of theseexperimental data.
Nevertheless,sincethe approximation usedby Nakamura et al. seemsto be
valid, the spectroscopicfactor to be inferred from our calculationsshouldbe
closeto 0.69.

This value is in fair agreement with another recent experimental value
obtained by Palit et al. [Pal03]. They measuredthe breakup crosssection
of 11Be on both a lead and a carbon target at 520A MeV. Using a �rst-
order analysis,they obtaineda spectroscopicfactor of 0:61� 5 from the cross
sectionmeasuredwith the leadtarget. However, from a Glauber-type model,
they inferred a spectroscopicfactor of 0:77� 4 from the data obtained with
the carbon target. They could not explain the discrepancybetween both
values.

Theserelatively low valuesseemto disagreewith the rather strong dom-
inanceof the [0+ 
 s1=2] con�guration obtained in most of the current stud-
ies. Geithner et al. [Gei99] have measuredthe magnetic moment of 11Be.
Their result suggesta nearly pure [0+ 
 s1=2] con�guration. Win�eld et al.
[Win01] have measuredthe crosssectionof the one-neutrontransfer reaction
11Be(p;d)10Be. Comparing their measurement to theoretical models, they
inferred a 16%admixture of the [2+ 
 d5=2] con�guration. In this con�gura-
tion, the 1=2+ ground state of 11Be is viewed as a d5=2 neutron linked to a
10Be corein its 2+ �rst excited state. From a one-neutronknockout reaction
of a 11Be projectile on a 9Be target [Aum00], Aumann et al. inferred an
amount of 22% of the core excitation in the 11Be ground state. However, a
recent reanalysisof this experiment [Tos02] suggeststhat the spectroscopic
factor of the [0+ 
 s1=2] con�guration might be higher. Ref. [Oza01] includes
a reanalysisof the measurements of the interaction crosssectionsof 11Be
performedby Fukuda et al. [Fuk91]. Using a Glauber-like model, Ozawa et
al. have deduceda spectroscopicfactor of the [0+ 
 s1=2] con�guration of
0.84. This valuecon�rms the spectroscopicfactor deducedby Win�eld et al.
[Win01]. Therefore,we seethat the exact value of this spectroscopicfactor
is still subject to discussion.

From our evolution calculations,wealsoextract the valueof the excitation
crosssectiontowards the 1

2
� state of 11Be: � 0p1=2 = 734mb. This value has

beenmeasuredby Nakamura et al. in anotherexperiment for a 11Beprojectile
impinging upon a 208Pb target at 64A MeV [Nak97]. They obtained an
excitation crosssection of 302� 31 mb. The discrepancybetween the two
valuescannot be explainedby the slight energydi�erence, nor is it justi�ed
by any of the spectroscopicfactors given above.

This di�erence might be due to the fact that the contributions of the
con�gurations including the 2+ excited state of the 10Be core are not the
samein the 1

2
+ ground state and the 1

2
� excited state [NTJ96, Des97]. This

suggeststhat our modelling of the excitedstate of 11Be may not bevalid, and
that a better model of this nucleusshould be usedin order to infer accurate
excitation crosssections.
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5.2.5 Sensitivit y to the choice of the optical poten tial

In the previous section, we saw that the results of our calculation are in
fair agreement with the experiment data. Theseresults have beenobtained
usingoptical potentials to simulate the nuclear interaction between11Be and
208Pb (seeSec.5.1.2). With the aim of investigating the in
uence of these
potentials upon our evolution calculation, we perform several tests. The
results of thesetests are detailed in this section.

We �rst analyse the sensitivity of our calculation to the choice of the
optical potentials by comparingresults obtained with di�eren t parametrisa-
tions of thesepotentials. Wealsocompareour calculation to that workedout
using a purely Coulomb projectile-target interaction. As mentioned earlier,
the nuclearinteraction, in that case,is modelledby a mereimpact-parameter
cuto� (seeSec.3.2). We �nally study the e�ect of each term of the projectile-
target potential (i.e. the core-targetand fragment-target potential) upon our
results.

Fig. 5.9 shows the breakupprobability of 11Be on 208Pb asa function of b
for three relative energiesof the projectile fragments after breakup (0.5, 1.0,
and 1.5 MeV). The evolution is computed in �v e di�eren t cases.In the �rst
one (full lines), we use the samepotentials as in the precedingsection. In
the secondcase(short dashedlines), the secondparametrisation of the core-
target potential given in Table 5.3 is used, while the sameneutron-target
interaction is chosen. In the third and fourth cases(long dashedand dot-
dashedlines respectively), the sameoptical potentials as in the �rst caseare
used,but their amplitudes are multiplied by 0.8 and 1.2 respectively. In the
�fth case(dotted lines), the calculation is performed without any nuclear
potential betweenthe projectile and the target.

The calculationsareperformedunder the conditionsdetailedin Sec.5.2.3.
It shouldbenotedthat dueto the smoother variation of the purely Coulombic
potential in comparisonwith that of the optical potentials, the convergence
can be reached using only N � = 4, N ' = 7 and Nr = 800 in the �fth case.

The breakup probabilities obtained without optical potential monoton-
ically decreaseas a function of b. It divergeswhen b tends to 0 as a con-
sequenceof the purely Coulombic nature of the interaction betweenprojec-
tile and target. In the calculations performedwith an optical potential the
breakup probability is negligible near b = 0 becauseof strong absorption.
When approaching the rangeof absorption in the nuclear optical potential,
the probability increasesand reachesa maximum located around 12-14fm.
At energiesbelow that maximum the breakup probability remains smaller
than that calculated without any optical potential. At energieslarger than
0.5 MeV, the nuclear interaction with the target leads to a signi�cant in-
creaseof the breakup probability. From b= 20-25fm, all results exhibit the
samebehaviour as without nuclear interaction.

The breakup probabilities obtained in the �rst and secondcasesare very
close to each other. This means that both parametrisations of the core-
target optical potential obtained by Bonin et al. lead to similar results. This
indicates that the evolution calculation is not very sensitive to the choiceof
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Figure 5.9: In
uence of the choiceof the optical potential upon our calcula-
tion. The breakup probability per MeV of 11Be on a 208Pb target is plotted
for E = 0:5, 1.0 and 1.5 MeV. Calculations are performedwith �v e di�eren t
modellings of the nuclear interaction (seetext).

thesepotentials. However, sincethoseparametrisationshave beenobtained
by the samegroupusingthe sametechniqueand the sameexperimental data,
this might not re
ect the sensitivity of our calculations to the choiceof the
nuclear interaction. The similarit y of theseresults might indeedonly re
ect
the fact that both potentials reproducethe samescattering data.

This is the reasonfor the tests performed with a reduction (third case)
or an increase(fourth case)of 20% of the amplitudes of the optical poten-
tials. The resultsobtainedin thosecasesarenot strongly di�eren t from those
obtained in the �rst case. When the optical potentials are multiplied by a
factor of 0.8, the breakupprobability is increaseddue to the reduction of the
absorption term. However, this rise does not exceed8 % in the maximum
region. The useof a multiplication factor of 1.2 has the opposite e�ect. In
this case,the breakupprobability is decreased.This drop correspondsto ap-
proximately 4 % of the valueobtained in the �rst casenearb= 14 fm. These
tests con�rm thereforethat the evolution calculation is not very sensitive to
the choicewe make of the optical potential modelling the nuclear interaction
betweenthe projectile and the target.

The comparisonof the breakup probabilities calculated with and with-
out optical potential suggeststhat the impact-parameter cuto� bmin should
depend on energy in order to simulate nuclear e�ects. We have �tted bmin

to obtain the samebreakup crosssection in a pure Coulomb breakup ap-
proximation as in the �rst calculation involving an optical potential at the
energiesof Fig. 5.9. The corresponding bmin are 12.7fm at 0.5 MeV, 11.0fm
at 1.0MeV and 9.4fm at 1.5MeV. This meansthat the choiceof an adequate
impact-parameter cuto� bmin in a black-disk approximation is not straight-
forward. It should be noted that the valuesof bmin obtained with the other
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optical potentials do not di�er by more than 0.5 fm from those mentioned
above. This indicates that our results are much lesssensitive to the choice
of the optical potentials than to the value of the impact parameter cuto�.
Sincethe introduction of optical potentials is very simple in this method (see
Chapter 4), it seemsbetter to usethem to model the projectile-target nuclear
interaction.

In order to analysethe in
uence of the modelling of the nuclearinteraction
upon the breakupcrosssection,we have computedthesecrosssectionsusing
each oneof the �v e casesmentioned above. The results of thesecalculations
are displayed in Fig. 5.10. In the �fth casewhere no optical potential is
used,the nuclear interaction is simulated by an impact-parametercuto� at
b= 13 fm to �t the other calculationsin the peaknear 0:3 MeV. The results
obtained with the second10Be-208Pb potential are not represented sincethey
cannot be distinguishedfrom thosecorresponding to the �rst potential. The
experimental data of Refs. [Nak94] and [Nak03] are also represented, the
former being scaledby a factor 0.85 [Nak03a].
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Figure 5.10: In
uence of the choiceof the optical potential upon the breakup
crosssectionof 11Be on 208Pb. Calculationsareperformedusingthe di�eren t
modellings of the nuclear interaction (seetext). The results obtained with
the second10Be-208Pb potential, being indistinguishablefrom thosewith the
�rst potential, are not displayed.

These results con�rm that our calculation is not very sensitive to the
choiceof the optical potential. Although the potentials usedin the third an
fourth casesdi�er by 40%,the relative di�erence betweenthe corresponding
breakupcrosssectionsis only of 2%in the peakregionanddoesnot exceed9%
at 2 MeV. Wealsoseethat the discrepancybetweenthe crosssectionobtained
with the purely Coulombic interaction and those computed using optical
potentials increaseswith the energy. This e�ect, alreadymentioned by Typel
and Shyam [TS01b], indicatesthat in this case,the nuclear interaction is not
well simulated by a mereblack-disk approximation.
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In order to completethis study, we analysethe in
uence of the choiceof
the optical potential upon the inelastic crosssection. For this analysis,we
considerthe output of the �v edi�eren t evolution calculationsdetailedabove.

The resultsof thesetestsareshown in Fig. 5.11. We seethat the inelastic
probabilities obtained from our evolution calculations behave similarly to
the breakup probabilities depicted in Fig. 5.9. It should be noted that,
unlike the breakup probabilities, the inelastic probabilities obtained with a
nuclear potential are smaller than thosecomputedwith a purely Coulombic
interaction at all impact parameter.
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Figure 5.11: In
uence of the choiceof the optical potential upon the inelastic
excitation probability P0p1=2 to the 0p1=2 excited state of 11Be. Calculations
are performed using the �v e di�eren t modellings of the nuclear interaction
detailed above.

The comparisonbetweenthe results obtained with the di�eren t nuclear
potentials leads to the sameconclusionsas in the analysis of the breakup
process.

In order to quantify thesedi�erences, we have computedthe value of the
inelastic crosssectionby integrating the inelastic probability over the impact
parameterb. The valuesobtained with the four optical potentials are listed
in Table 5.6. For comparison,the inelastic crosssectioncalculated without
optical potential using an impact parameter cuto� at bmin = 13 fm is also
displayed.

Potential C.+N.(1) C.+N.(2) C.+0:8� N.(1) C.+1:2� N.(1) Coul.
� 0p1=2 (b) 0.734 0.735 0.741 0.729 0.707

Table 5.6: Valuesof the inelastic crosssection� 0p1=2 obtained with the four
di�eren t parametrisations of the projectile-target optical potentials. The
valuecomputedwithout nuclearpotential is givenfor a cuto� at bmin = 13fm.
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These values con�rm that, like the breakup crosssection, the inelastic
crosssectionis not very sensitive to the choiceof the optical potential. The
relative di�erence between them is indeed lessthan 2%. We also seethat
the use of an impact parameter cuto� at bmin = 13 fm leads to a slightly
underestimation of the inelastic crosssectioncomputed without optical po-
tential. In order to obtain the samevalue as with the nuclear potentials, a
value of bmin = 11:5 � 0:5 fm should be used. This again illustrates that no
impact-parameter cuto� can fairly simulate the nuclear interaction in this
case.

It should be noted that, unlike in the computation of the breakup cross
section, the convergenceis not reached at b = 300 fm in this case. This
can be easily understood from the asymptotic behaviour of the �rst-order
approximation of the inelastic probability (3.57). This probability decreases
roughly as exp(� 2b� E=�hv) where � E is the excitation energy. The small
value of the excitation energy(� E = 0:320MeV) explainsthis slow conver-
gence. However, we have seenin Sec.5.2.2 that the excitation probability
computedwith our model convergestowards that obtained at the �rst-order
approximation at high impact parameter. Therefore, in order to compute
the valuesof the crosssectionsgiven in Table5.6, we assumethat the inelas-
tic probability exhibits the samebehaviour as its �rst-order approximation
above b= 300fm. This leadsto an increaseof the excitation crosssectionof
0:029 b. We think that the error due to this proceduredoesnot exceed1-2
10� 3 b.

Weturn now towardsthe individual e�ects of the core-targetand fragment-
target nuclear potentials on our results. This analysis has been done by
neglectingeither the former or the latter in the evolution calculation. The
breakup probabilities obtained in those tests are depicted in Fig. 5.12 as a
function of the impact parameter for three relative energies(0.5, 1.0, and
1.5 MeV). The results of the test in which we have consideredthe �rst 10Be-
208Pb potential of Table 5.3 while the neutron-208Pb potential was assumed
to be nil are represented as dashedlines. The values computed using the
neutron-208Pb potential of Table 5.3 and neglectingthe nuclear part of the
10Be-208Pb potential are displayed as dot-dashedlines. For comparison,the
breakup probabilities obtained with both optical potentials (full lines) and
with a purely Coulombic potential (dotted lines) are alsodepicted.

The rolesplayedby each of theseoptical potentials seemto bevery di�er-
ent. The in
uence of the 10Be-208Pb nuclearpotential is very strongat low im-
pact parametersbut becomesnegligiblebeyond b= 15 fm. Above this value,
the breakup probability is indeed identical to that obtained with a purely
Coulombic interaction. On the other hand, the e�ect of the neutron-208Pb
potential is smallerin amplitude but remainssigni�cant up to b= 20� 25 fm.
We seealso that this potential is responsiblefor the increaseof the breakup
probability observed when the optical potentials are considered.

Fig. 5.13 illustrates that the samee�ects are observed for the excitation
probability.

It seemstherefore that the in
uence of the nuclear interaction onto the
evolution calculation is dominatedby the core-targetpotential at low impact
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Figure 5.12: Individual in
uence of the 10Be- and n-208Pb nuclear potentials
on the evolution calculation. Breakup probabilities per MeV are represented
for E = 0:5, 1.0 and 1.5 MeV. Calculation have been performed with ei-
ther the 10Be-208Pb (dashedlines) or the n-208Pb (dash-dotted lines) nuclear
potential. For comparison,the results including both terms (full lines) and
noneof them (dotted lines) are alsodisplayed.

parameter. The neutron-target potential seemsto a�ect the wave function
behaviour at higher b.

This di�erence is most likely due to two distinct causes.The �rst one is
the Coulomb repulsion between the 10Be core and the target. The second
oneis the high probability of presenceof the neutron at a largedistancefrom
the projectile centre of mass.

The Coulomb repulsion betweenthe core and the target indeed inhibits
the nuclear interaction between them. Therefore, this interaction plays a
role only when the projectile and the target are closeto each other. That
is to say, when their relative motion is described by a tra jectory with a low
impact parameter.

Sincethe neutron is not sensitive to this Coulomb �eld, it is not repelled
by the target. This meansthat in this case,the nuclear interaction is not
inhibited by the Coulomb repulsion at large distances. We will indeed see
in Chapter 7 that, when the fragment is charged, the nuclear interaction
betweenthe fragment and the target is strongly hindered. Moreover, the fact
that the halo neutron has a high probability of presenceat a large distance
from the core implies that its interaction with the target can be signi�cant
even for distant tra jectories. This might be seenas a signature of the halo
structure of the projectile.
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Figure 5.13: Individual in
uence of the 10Be- and n-208Pb nuclear potentials
on the excitation process. Calculations have been performed in the four
di�eren t casesdetailed above.

5.2.6 Choice of the tra jectory

In the precedingsections, the evolution calculations have been performed
using straight-line tra jectories to describe the relative motion of the pro-
jectile and the target. This approximation has already beenusedby many
authors (seee.g. Refs. [KYS94], [EBB95]). As mentioned in Sec.3.3, this
approximation is justi�ed by the fact that we are consideringrelatively high
velocities. However, since the interaction between those nuclei is assumed
to be dominated by the Coulomb interaction (seeSec.3.2), we should make
useof Rutherford tra jectories(seeSec.3.3). In a previousanalysis,Melezhik
and Baye [MB99] have shown that this approximation is legitimate.

With the aim of con�rming this result, we perform a calculation using
hyperbolic tra jectories instead of straight lines. A similar calculation has
alsobeenworked out by Typel and Shyam [TS01b]. However, sincethey do
not comparetheir resultswith thoseobtained with straight-line tra jectories,
nothing can be inferred about the accuracyof this approximation.

This calculation is performedwith the sameconditionsasthosedescribed
in Sec.5.2.3. The Coulomb tra jectoriesarederived from the parametrisation
described in Sec.3.3. The initial velocity v consideredhere is assumedto
be the sameas that used for the straight-line tra jectories, that is to say
v = 0:36c.

The results of this test are illustrated in Fig. 5.14. The valuesobtained
using straight-line tra jectories are pictured as full lines while those corre-
sponding to hyperbolasare drawn as dashedlines.

For each energy, the breakup probability computedwith Rutherford tra-
jectories can be seen,to someextent, as that obtained with straight lines
translated towards lower impact parameters. This e�ect is due to the cur-
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Figure 5.14: In
uence of the choiceof the tra jectory on the evolution calcu-
lation. Breakup probabilities per MeV are represented for E = 0:5, 1.0 and
1.5 MeV. Calculations are performedusing either hyperbolic (dashedlines)
or straight-line (full lines) tra jectories.

vature of the hyperbolas. At �xed impact parameter, the distanceof closest
approach between the projectile and the target is indeed larger for hyper-
bolas than for straight-line tra jectories. This means that the results ob-
tained with a Coulomb tra jectory are better reproducedusinga straight line
with a slightly larger impact parameter. The curvature of the hyperbola
decreasesat high b, hencethis e�ect is lesssigni�cant when we considerdis-
tant tra jectories. This is obvious in Fig. 5.14, where the di�erence between
both calculations is signi�cant at low b only. However, this e�ect remains
very small, and, when integrated over the entire impact-parameter range,
it is completely negligible. For example,the relative di�erence betweenthe
breakup crosssectionscomputed with both tra jectories is lessthan half a
percent in the peak region, and doesnot exceed2% at E = 2 MeV.

In order to completethis study, we analysethe in
uence of the tra jectory
upon the inelasticprocess.In Fig. 5.15,wedepict the excitation probabilities
obtained with both the straight-line (full line) and the hyperbolic (dashed
line) tra jectories. As in the caseof the breakup probability, the main dif-
ferencebetweenthe two calculations lies at low impact parameters. In this
case,this di�erence vanishesfor b > 15 fm. Therefore, the choice of the
tra jectory seemsto have little in
uence upon the inelastic processas well.
When the probability is integrated over b, this di�erence becomesnegligible.
Using hyperbolic tra jectories,we obtain an inelastic crosssectionof 0:736b.
This value has to be comparedto that computedwith a straight-line tra jec-
tory which is 0:734 b. It should be noted that the di�erence betweenboth
crosssectionsis of the sameorder of magnitudeasthe uncertainty due to the
extensionfor b> 300fm, of our results by the inelastic probability obtained
at the �rst-order approximation.
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Figure 5.15: In
uence of the choiceof the tra jectory on the inelastic process.

This analysis shows that the use of straight-line tra jectories to model
the projectile-target relative motion insteadof hyperbolasis plainly justi�ed
at these energies. A more accurate description of this motion should of
courseinclude the nuclear interaction betweenthe projectile and the target.
However, due to the short rangeof the nuclear interaction, the modi�cation
should be signi�cant only at low impact parameters,and should not alter
our results substantially .

5.2.7 In
uence of the Pauli forbidden sates

In Sec.5.1.1,wehaveseenthat our choiceof core-fragment potential includes
two unphysicalstatesin the 11Be boundspectrum. As explainedin Sec.3.1.1,
these0s1=2 and 0p3=2 states simulate the neutron orbitals of the core for-
bidden to the halo neutron by the Pauli principle. Usually, the presenceof
theseunphysical deepbound statesis ignored[EBB95, KYS96, MB99]. This
approximation is justi�ed by the fact that theseforbidden statesare weakly
populated. In order to check this assumption,we have performedan evolu-
tion calculation at b = 15 fm with an initial velocity v = 0:36c. At the end
of this calculation, the probabilities of occupation are 4.0 10� 9 for the 0s1=2
state and 4.7 10� 3 for the 0p3=2 state. For comparison, the probabilities
of occupation of the physical bound states are 0.86 for the 1s1=2 state and
1.4 10� 2 for the 0p1=2 state. Although the population of the 0s1=2 state is
indeednegligible, that of the 0p3=2 state is not so weak.

It is therefore interesting to check this approximation by performing a
calculation in which these states are removed. We have seenin Sec.3.1.3
that using pairs of supersymmetric transformations allows the construction
of a supersymmetricequivalent potential (SEP). The bound spectrum of this
potential is identical to that of the initial oneexceptfor the unphysicalbound
states, which have been removed. Moreover, this SEP is phaseequivalent.
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Figure 5.16: E�ectiv e 10Be-n potentials for the s1=2, p1=2 and p3=2 partial
waves. Both the initial Woods-Saxonpotentials (WSP) (seeTable 5.2) (full
lines) and the supersymmetricequivalent potentials (SEP) (dotted lines) are
displayed.

That is to say that it exhibits the samephaseshifts asthe original potential.
In this section, we analysethe in
uence of theseunphysical states onto

the breakup of 11Be on 208Pb. We perform an evolution calculation using
a SEP obtained after the removal of both the 0s1=2 and 0p3=2 unphysical
bound statesof the initial Woods-Saxonpotential (WSP) given in Table5.2.
The SEP and WSP are displayed in Fig. 5.16 for the s1=2, p3=2, and p1=2
partial waves as dotted and full lines respectively (the depicted potentials
correspond to the e�ectiv e potentials, i.e. including the centrifugal barrier).
For p1=2 (as for higher partial waves),both potentials are identical.

The evolution calculation usingthe SEP is performedin exactly the same
physical and numerical conditionsasthosedetailed in Sec.5.2.3. The results
of our study are represented in Fig. 5.17. The contributions of the three
dominant l j components are also displayed. The valuesobtained with the
SEP are represented as dotted lines while those corresponding to the WSP
are depictedas full lines.

As seenin Fig. 5.17,the resultsobtainedwith the SEParequite similar to
thoseobtained with the initial WSP. The corresponding crosssectionsdi�er
by only 1% in the peak region. This meansthat the presenceof the Pauli
forbidden states does not signi�cantly modify the projectile-breakup cross
section. This fully justi�es the useof deeppotentials in such calculations. We
also seethat the di�erence betweenthe SEP and the WSP variesaccording
to the partial wave. The removal of the unphysicalbound statesindeedleads
to an increaseof about 2.5% of the breakup crosssection for the dominant
p3=2 wave. However, this elimination seemsto reduce the contribution of
the p1=2 wave by approximately 5%. The di�erence betweenboth s1=2-wave
contributions is negligible.
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Figure 5.17: In
uence of the Pauli forbidden states of the 10Be-n potential
onto the breakup crosssection. The dominant s1=2, p1=2 and p3=2 compo-
nents are indicated separately.

With the aim of understandingthesee�ects in physical terms, we make
useof the �rst-order perturbation theory (seeSec.3.4.3). We have seenthat
with this approximation, the breakup crosssectioncan easily be calculated
if the interaction between the projectile and the target is assumedpurely
Coulombic. For this simpleanalysis,we make useof formula (3.68) obtained
by consideringonly the �rst multip oleof this interaction. The impact param-
eter cuto� usedto simulate the nuclearinteraction betweenthe projectile and
the target hasbeen�xed to bmin = 13 fm as in Sec.5.2.5. The breakup cross
sectionis calculatedwith this formula using both the SEP and the WSP for
modelling the core-fragment interaction. The resultsof thosecalculationsare
displayed in Fig. 5.18. The contribution of the p3=2 and p1=2 partial waves
are represented as well. The contributions of other partial waves, like the
s1=2 ones,cannot be explained in such a simple model. However, sincethe
major contributions are due to p waves, it is su�cien t to have a qualitativ e
explanation of thesemodi�cations.

As seenin this �gure, the �rst-order approximation qualitativ ely repro-
ducesthe e�ects observed in the results of the evolution calculation.

In (3.68), the only dependenceon the core-fragment potential lies in the
radial integral. This integral is indeeda function of the radial wave functions
of the initial and �nal states. Sincethesewave functions are modi�ed by the
useof the SEP, the variations in the di�eren t contributions to the breakup
crosssectionshouldbe explainedby analysingthesemodi�cations. Fig. 5.19
displays the radial wavefunctionsof somepartial wavesusedfor this analysis.

In the part (a) of this �gure, the wave function of the physical ground
state of 11Be is depicted. It is obtained using both the initial WSP (full
line) and the SEP (dotted line). We seethat the removal of the (unphysical)
0s1=2 state of the WSP leads to the elimination of the node of the wave
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Figure 5.18: Analysis at the �rst-order approximation of the in
uence of the
Pauli forbiddenstatesonto the breakupcrosssectionof 11Be on 208Pb. Values
are computed using (3.68) where only the E1 multip ole of the projectile-
target interaction is considered.The nuclear interaction is simulated by an
impact-parameter cuto� at bmin = 13 fm. Both p1=2 and p3=2 components
are indicated separately.

function. However, the asymptotic behaviour of the wave function is not
modi�ed by the supersymmetric transformations. This is due to the fact
that thesetransformationsa�ect only the internal part of the wave function,
asexplainedin Sec.3.1.3. The part (b) of Fig. 5.19displays the wavefunction
of the p1=2 scatteringstate corresponding to a relative energyof E = 1 MeV.
As already mentioned, the SEP and the WSP coincidefor this wave. Hence,
the scattering statesobtained with both potentials are identical. The radial
wave functions of a p3=2 scattering state are plotted in the part (c) of the
�gure. As in part (b), they have beencomputed for E = 1 MeV. Sincethe
Pauli forbidden 0p3=2 state of the WSP has beenremoved in the SEP, the
wave functions obtained with both potentials are not the same. Here also,
we seethat the modi�cation occursonly at small distances.This illustrates
the fact that the scattering properties of the SEP are identical to those of
the initial WSP.

The analysisof Fig. 5.19enablesus to qualitativ ely understandthe mod-
i�cations in both p contributions to the breakup crosssection due to the
removal of the Pauli forbidden states of the WSP. We indeed seethat the
elimination of the node in the s1=2 physical bound state wave function (a)
increasesthe domain where this wave function and that of the p1=2 scat-
tering state (b) have opposite signs. This suggestsa decreaseof the radial
integral appearing in (3.68). This explain the small reduction of the p1=2
contribution observed in both Fig. 5.18and Fig. 5.17.

The modi�cations of both the s1=2 bound state (a) and the p3=2 scat-
tering state (c) due to the removal of the forbidden bound states lead to
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Figure 5.19: Radial wave functions of (a) the physical ground state of the
10Be-n system;(b) a scattering state of this systemin the p1=2 wave; (c) a
scattering state in the p3=2 wave. The scattering states are computed at a
relative energyof E = 1 MeV. Both results coincidefor the p1=2 wave.



104 CHAPTER 5. 11Be

SEP
WSP

b (fm)

P
0p

1=
2

100908070605040302010

0.02

0.015

0.01

0.005

0

Figure 5.20: In
uence of the Pauli forbidden statesupon the inelastic prob-
abilit y to the 0p1=2 excited state of 11Be.

an increaseof the domain where both functions have the samesign. This
explains the slight rise of the radial integral of (3.68), and therefore that
the p3=2 contribution to the breakup crosssectionis larger when the SEP is
used.

As in the previoussections,wealsoperform this analysisfor the excitation
process. The inelastic probabilities obtained with both the WSP and the
SEP are displayed in Fig. 5.20 as a function of the impact parameter. We
seethat the removal of the Pauli forbidden statesmodi�es more deeply the
inelastic probabilities than the breakup ones. The values computed using
the SEP are higher than those obtained with the initial WSP. The relative
di�erence betweenboth calculations is about 14-16%in the entire impact-
parameterrange. This meansthat unlike the other e�ects we have studied in
the previoussections,this modi�cation is signi�cant at every b. The values
of the excitation crosssectionsare of 0.840b when consideringthe SEP and
of 0.734b with the WSP.

This signi�cant increaseof the inelastic crosssectioncan be qualitativ ely
understood in the �rst-order perturbation theory (Sec.3.4.3). In Fig. 5.19,
we have indeedseenthat the elimination of the unphysical 0s1=2 state leads
to the removal of the node in the wave function of the physical 1s1=2 ground
state. Moreover, the wave function of the 0p1=2 excited state does not ex-
hibit any node. Therefore this node removal in the physical ground state
increasesthe domain on which the wave function of both states have the
samesign. Hencethe radial integral appearing in the expressionof the �rst-
order approximation of the inelastic crosssectionis increasedwhen the SEP
is used.

In this section, we have thus analysedthe in
uence of unphysical deep
bound statesin the core-fragment potential on the evolution calculation. Us-
ing a supersymmetric partner of the initial potential, we have performed a
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calculation in which theseforbiddenboundstatesareeliminated. By compar-
ing the resultsof this calculation to thoseobtained with the initial potential,
we have shown that thosestatesdo not play a signi�cant role in the breakup
process.The useof deeppotentials thereforeseemsfully justi�ed in such cal-
culations. Larger di�erences are observed in the calculation of the inelastic
crosssections.This meansthat the presenceof the Pauli forbidden states is
more in
uen t upon the excitation process.

The sametechniquehasalreadybeenapplied to study the in
uence of the
Pauli forbiddenboundstatesonto the bound-stateproperties(binding energy
and root-mean-squareradius) of neutron halo nuclei [RVB96, HBS99]. In
the �rst reference,Ridikas,Vaagenand Bang modelled 11Be with a potential
leading to analytical expressionof the wave functions. They found that the
unphysical states do not signi�cantly modify the static properties of these
nuclei. Hesse,Baye and Sparenberg [HBS99] reached the sameconclusion
for two-neutron halo nuclei using more realistic potentials for modelling the
di�eren t two-body interactions. The present study is, to someextend, the
completionof theseanalysesasit concernsthe e�ect of the unphysicalbound
statesupon the dynamical properties of 11Be.

We have also shown that the modi�cations of the breakup and inelastic
crosssectionsdue to the removal of the unphysical states can qualitativ ely
be understood using a �rst-order calculation.
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Chapter 6

A candidate one-neutron halo
nucleus: 15C

In the previouschapter, we have analysedthe Coulomb breakup of the one-
neutron halo nucleus 11Be on 208Pb. This analysisshowed that the results
obtained with our theoretical model are in fair agreement with the experi-
mental data. This seemsto indicate that our method describesthe breakup
of one-neutronhalo nuclei on heavy targets rather accurately.

With the aim of applying our model to other halo nuclei, we now turn to
the 15C. As seenin Chapter 1, this nucleusis a candidate one-neutronhalo
nucleus.This suggeststhat 15C may be rather well describedasa 14C coreto
which a neutron is looselybound. Furthermore, the Coulomb breakupof 15C
on 208Pb hasbeenstudied in a recent experiment performedby Nakamura et
al. [Nak03].

This chapter examinesthe theoretical study of the Coulomb breakup of
15C on a 208Pb target. Like the previouschapter, it is divided into two parts.
The �rst one comprisesthe ingredients of our theoretical model. That is to
say the parametrisationsof the 14C-neutron potential and the optical poten-
tials usedto simulate the projectile-target nuclear interaction. In the second
part, we present and analysethe results of our model. This part includes,
amongother things, the comparisonof the breakup crosssectioncomputed
after our evolution calculationswith the preliminary data of Nakamura et al.
[Nak03].

6.1 Theoretical mo del

6.1.1 Description of 15C

In our model, the 15C nucleusis represented by a pointlik e neutron loosely
bound to a pointlik e 14C core. The neutron hasa spin I = 1

2 , while the core
is assumedto be in its 0+ ground state. The interaction betweenthose two
bodies is modelled by a local potential with the Vcf form factor described
in Sec.3.1.1. The di�useness a and radius R0 of this potential are chosen
equal to those usedfor 11Be: a = 0:6 fm and R0 = 1:2A1=3

P fm. The depths
of the central and spin-obit coupling terms are adapted to reproduce the

107
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J � Eexp (MeV) � exp (MeV) nl j E th (MeV) � th (MeV)
1
2

+ -1.218 - 1s1=2 -1.2180 -
5
2

+ -0.478 - 0d5=2 -0.4783 -
3
2

+ 3:56� 0:1 1:7 � 0:4 0d3=2 3.25 � 1:7

Table 6.1: Experimental bound-state and resonanceenergies(Eexp), width
(� exp) and quantum numbersJ � of the 15C [Ajz91] usedto �t the parameters
of the Vcf potential (left-hand side). The theoretical energies(E th ), width
(� th ) andquantum numbersnl j obtainedwith the parametersof Table6.2are
alsolisted (right-hand side). The threePauli forbiddenboundstatesobtained
with this potential are: a 0s1=2 at -30.21MeV, a 0p3=2 at -14.24MeV and
a 0p1=2 at -10.82MeV.

bound statesand one of the resonancesof 15C. The bound spectrum of 15C
comprisesonly two states: a 1

2
+ ground state and a single 5

2
+ excited state.

In our two-body model, they are viewed as nl j = 1s1=2 and 0d5=2 orbitals.
The resonancewe consider lies in a 3

2
+ orbit. This orbit corresponds to a

0d3=2 wave in our description. The experimental energiesof thesestates,as
well asthe width of the resonance,arelisted in the left-hand sideof Table6.1.

It should be noted that these values correspond solely to either s or d
waves. This meansthat only the depths of the potential for l = 0 and l = 2
are adjusted to experimental data. As in the 11Be case(seeSec.5.1.1), we
considerthe samepotential for all partial waveswith l > 0. The value of the
parameterswe have obtained in this way are reproduced in Table 6.2. The
right-hand side of Table 6.1 displays the quantum numbers and energiesof
the physical bound states we get using this potential. This potential leads
also to three forbidden bound states. Their quantum numbers and energies
are listed in the caption of the �gure.

Vl=0 (MeV) Vl> 0 (MeV) VLS (MeV fm2) a (fm) R0 (MeV)

52.814 51.3 20.77 0.6 2.959

Table 6.2: Parametersof the 14C-n potential (seeSec.3.1.1 for the detailed
expressionof the parametrisation).

Using this potential, the root-mean-squaredistancebetweenthe coreand
the halo neutron in the 1s1=2 ground state is equal to 5.391fm. This value
is rather large when compared with the range of the nuclear interaction.
Furthermore, the probability of presenceof the neutron outsidethe classically
allowed region is 36%. This indicates that our modelling of 15C exhibits a
halo structure. However, it is not as extendedas that obtained for the 11Be
ground state (for 11Be, the rms radius is 7.035 fm, and the probability of
presencebeyond the classicalturning point is 46%). This is in agreement
with the experimental results which predict a smaller halo structure in 15C
than in 11Be [Sau00, Oza01].
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6.1.2 Pro jectile-target poten tials

In order to simulate the nuclear interaction betweenthe projectile and the
target, wemakeuseof optical potentials, asin the study of the 11Be breakup.
As mentioned above, the breakup crosssectionof 15C hasbeenmeasuredby
Nakamura et al. [Nak03]. This experiment hasbeencarried out at an energy
of 68A MeV using a 208Pb target. With the aim of comparing our results
with thesedata, we perform our evolution calculation using the sameenergy
and target.

As in Sec.5.1.2,weconsiderfor the neutron-target interaction the parame-
trisation of Becchetti and Greenlees[BG69] with an energyof 68 MeV. The
14C-208Pb optical potential, like the 10Be-208Pb one(seeSec.5.1.2for details),
is adapted from the � -208Pb potential proposedby Bonin et al. [Bon85].
However, sincethe choiceof the optical potentials doesnot in
uence signi�-
cantly our results (seeSec.5.2.5), we only considerthe �rst parametrisation
of Ref. [Bon85]. The valuesof the parametersfor thosepotentials are listed
in Table 6.3.

c or f V W RR RI aR aI RC

14C 70.0 58.9 7.67 7.42 1.040 1.000 5.92

n 29.46 13.4 6.93 7.47 0.75 0.58 -

Table 6.3: Parametersof the n-208Pb [BG69] and 14C-208Pb [Bon85] optical
potentials (seeSec.3.2 for the detailed expressionof the parametrisation).
Depths are expressedin MeV while radii and di�usenessesare in fm. The
valuesWD , RD and aD are not displayed sinceWD = 0 in all cases.

6.2 Evolution calculation

In this section,we present and discussthe results of our model obtained for
a 15C projectile and a 208Pb target. We �rst illustrate the time evolution of
the projectile wave function computedwith our method. Then, we compare
the results of this method with thoseobtained at the �rst-order approxima-
tion. After this analysis,we detail the physical and numerical conditions of
our calculations. The results of these calculations are then presented and
analysed. This analysis includes, among other things, a comparisonwith
the experimental data measuredby Nakamura et al. [Nak03]. Finally, the
in
uence of the Pauli forbidden states upon the wave packet evolution is
studied.

6.2.1 Time evolution of the pro jectile wave function

In Sec.5.2.1, we have illustrated our time evolution calculation for a 11Be
projectile impinging on a 208Pb target. With the aim of emphasisingthe
similarities and di�erences between11Be and 15C, we perform the samekind
of calculation. The evolution of the 15C wave function is computed from



110 CHAPTER 6. 15C

an initial wave function 	( r ; t in ) corresponding to the physical ground state
� 1s1=2� 1=2. We considera 208Pb target. The initial velocity is chosenequal
to v = 0:36c which corresponds to the 68A MeV experimental energy of
Ref. [Nak03]. The calculation is performed using a straight-line tra jectory
with impact parameter b = 30 fm. In Fig. 6.1, the time-dependent wave
function of 15C is projected onto three di�eren t spin-angular states. The
�rst one is that of the initial bound state (s1=2 � 1=2), the secondthat of
the excited state (d5=2� 3=2), and the third that of the largestcontribution
to the breakup crosssection (p3=2 � 3=2). Thesecomponents of the wave
function are displayed from the initial time t in = � 20 �h/MeV to the �nal
time tout = 20 �h/MeV at intervals of 5 �h/MeV.

The results of this calculation are quite similar to thoseobtained with a
11Be projectile (seeSec.5.2.1). The initial bound state is not signi�cantly
modi�ed before the time of closestapproach t = 0. At that time, the wave
function is moredeeplyaltered: the behaviour of the s1=2� 1=2 partial wave
is strongly a�ected at large distances,while signi�cant components appear
in the other partial waves. At positive times, a long tail, corresponding to
the breakup component, developsrather quickly towards large distancesin
all partial waves.

The main di�erence betweenthis time evolution and that of the 11Be lies
in the population of the excited state. In Sec.5.2.1, we have indeed seen
that during its interaction with the target, the 0p1=2 excited state of 11Be is
signi�cantly populated. This was revealedby the appearanceof a peak near
the origin in the corresponding partial wave. In the present evolution, the
samekind of peak,corresponding to the 0d5=2 excited state of 15C, develops
in the d5=2 � 3=2 partial wave (seeFig. 6.1 (b)). However, its amplitude is
two order of magnitude lower than that observed in Fig. 5.1 (b). This means
that the excitation processis much lessprobable for the 15C nucleus than
for 11Be. This has two causes. The �rst one is that the excitation of 15C
requires twice as much energy than that of 11Be: 740 keV in 15C for only
320 keV in 11Be (seeTables6.1 and 5.1). The secondone is that only E2
transitions areallowedbetweenthe 1s1=2 groundstate and the 0d5=2 excited
state of 15C (seeformula (3.62) with l0 = 0 and l = 2), while the excitation
of 11Be is governed by the more probable E1 transitions (see Sec.5.2.2).
The combination of both e�ects explain the rather low population of the 15C
excited state during its interaction with 208Pb.

It shouldbenoted that a small peakcanalsobeobservedin the p3=2� 3=2
partial wave. It corresponds to the 0p3=2 unphysical bound state obtained
with our 14C-n potential. This meansthat, asfor 11Be, the forbiddenstatesof
15C are populated during the collision. However, the amplitude of this peak
is lower than that appearing in the p3=2� 3=2 partial wave of the 11Be wave
function (seeFig. 5.1 (c)). This suggeststhat the Pauli forbidden statesare
lesspopulated during the evolution of 15C than that of 11Be. The in
uence
of thesestates upon the time evolution of the projectile wave-function will
be analysedin more details in Sec.6.2.5.
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Figure 6.1: Time evolution of the wave function of a 15C projectile impinging
on a 208Pb target for v = 0:36c and b= 30 fm. The moduli of the s1=2� 1=2
(a), d5=2� 3=2 (b) and p3=2� 3=2 (c) partial wavesobtained with the initial
1s1=2 � 1=2 bound state are plotted.
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6.2.2 Comparison with the �rst-order appro ximation

In the previouschapter, wecomparedour evolution calculation with the �rst-
order approximation consideringa 11Be projectile. This analysis revealed
that even at high velocities and high impact parameters, s and d partial
wavesof the 11Be wave function are signi�cantly populated. This di�erence
with the �rst-order approximation wasunderstood asa high couplingbetween
continuum states.

In order to seewhether the samephenomenonoccurs in the caseof 15C,
we perform the samestudy for this projectile. In Fig. 6.2, we display the
ratio between the breakup probability dPbu=dE obtained with our model
(3.38) and its �rst-order approximation dPE 1

bu =dE computedfor a purely E1
Coulomb potential (3.67). This ratio is plotted as a function of the relative
energybetweenthe coreand the halo neutron after breakup. As in Sec.5.2.2,
the calculationsareworked out at three velocities (v = 0:25c, 0:3c and 0:35c)
and four impact parameters(b= 40 fm, 60 fm, 80 fm and 100 fm).

The results we obtain for 15C are quite similar to thosecomputedwith a
11Be projectile (seeSec.5.2.2). The breakup probability calculatedwith our
evolution method seemsindeedto convergetowardsits �rst-order approxima-
tion at high velocities and large impact parameters.As in the 11Be breakup
calculation this convergenceis rather slow. This suggeststhat, in this case
too, higher-order e�ects remain signi�cant even at high impact parameters
and high velocities.

In order to con�rm this analysis, let us have a look at the contributions
of the di�eren t partial wavesto the breakupprobability. In Fig. 6.3, we have
displayed the contributions of the s, p and d partial waves obtained at the
threedi�eren t velocitieswith an impact parameterb= 100fm. As in Fig. 6.2,
the probabilities are scaledby the �rst-order approximation dPE 1

bu =dE. The
contribution of the f waves has not beenpictured since it does not exceed
3% of the total breakup probability.

Theseresultsshow that the major contribution to the breakupprobability
is dueto the p partial waves. However, asseenin Sec.5.2.2,the contributions
of s and d waves are, albeit small, still signi�cant even at high velocities.
In order to rule out the possibility that this e�ect might be due to higher
multip oles,we have performedan evolution calculation consideringonly the
�rst multip ole of the time-dependent potential (5.1). The results of this
calculation are almost identical to those obtained when all the multip oles
are included. The maximum relative di�erence betweenthem is indeedlower
than 2%.

It seemsthereforethat, as in the caseof 11Be, the signi�cant populations
of the s and d waves result from higher-order terms. As seenin Sec.5.2.2,
the second-orderE1-E1 term is most likely the major contribution to that
e�ect. It indeedincludesthe coupling betweenthe p wavesand the s and d
onesafter the breakup of the projectile.

In the previouschapter, wehavecompletedthis analysisby comparingthe
excitation probability obtained using our model with that computed at the
�rst-order approximation. This comparisonshowedus that in this case,both
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Figure 6.2: Comparison with the �rst-order approximation. Ratio
(dPbu=dE)=(dPE 1

bu =dE) is plotted as a function of the 14C-n relative energy.
Calculationsare performedat di�eren t velocities v and impact parametersb.
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Figure 6.3: Contributions of the s, p and d wavesto the total breakup prob-
abilit y. Values,scaledby dPE 1

bu =dE, are plotted as a function of the energy.
Calculationshave beenperformedat b= 100fm for three di�eren t velocities.

calculations are in very good agreement at high impact parameter (seeTa-
ble 5.4). The contrast betweenthis result and that obtained for the breakup
probabilities has beenunderstood as a smaller in
uence of the higher-order
terms upon the excitation processthan upon the breakup reaction. It seems
therefore that such a study provides a useful test of our method since the
e�ects of the higher-orderterms are naturally diminished in this process.

In order to completethe comparisonbetweenour method and the �rst-
order approximation for a 15C projectile, we perform the sameanalysis of
the excitation probability. The excitation probability P0d5=2 towards the
single excited state of 15C is computed from the output of our evolution
calculations. The values obtained with an initial velocity v = 0:35c are
displayed in the �rst row of Table 6.4 for di�eren t impact parameters. It
should be borne in mind that in this case,only E2 transitions are allowed
between the 1s1=2 ground state and the d05=2 excited state. This means
that the �rst-order approximation of this probability P E 2

0d5=2 is obtained using
the secondmultip ole of the projectile-target interaction (3.59).

b= 40 fm b= 60 fm b= 80 fm

P0d5=2 3.3210� 7 2.3110� 8 2.5 10� 9

PE 2
0d5=2 5.5310� 8 1.1510� 8 3.7 10� 9

Table 6.4: Comparisonbetweenthe excitation probability obtained with our
method P0d5=2 and its �rst-order approximation PE 2

0d5=2.

The comparisonbetweenthesevaluesand thoseof Table 5.4 give rise to
two commentaries. The �rst one is that the excitation probabilities of 15C
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are much smaller than thoseof 11Be. The valuesof Table 6.4 are indeedfour
to �v eordersof magnitudelower than thoseof Table5.4. This result, already
observed in Sec.6.2.1, is due to the combination of both a higher excitation
energy and a higher multip olarity of the transition from the ground state
towards the excited state.

The secondcommentary raised by this comparisonis that the discrep-
ancy betweenour method and the �rst-order approximation is much larger
for 15C than for 11Be. Following our �rst idea, this would meanthat the low
convergenceof our results towards the �rst-order approximation observed in
Fig. 6.2 is not related only to higher-ordere�ects. However, this discrepancy
is most likely due to the very small value of the excitation probability men-
tioned above. It might therefore merely indicate that we cannot reach an
accuracyof 10� 9 on the excitation probability with our algorithm.

The results of this comparisonbetween our method and the �rst-order
approximation seemto con�rm that s and d wavessigni�cantly contribute to
the breakup probability even at high impact parametersand high velocities.
This suggeststhat higher-orderterms, and particularly the second-orderE1-
E1 contribution, play a signi�cant role in the Coulomb breakupof halonuclei.
As alreadymentioned in Sec.5.2.2,this e�ect might beseenasresulting from
the halo structure or the low binding energyof the systemwe consider.

6.2.3 Conditions of the calculation

The breakupof 15C on 208Pb hasbeenstudiedexperimentally by Nakamura et
al. The measuredbreakupcrosssectionhasnot beenpublishedyet. However,
preliminaries data can be found in Ref. [Nak03].

In order to compareour theoretical model with this recent experiment,
we perform an evolution calculation for a 15C projectile impinging upon a
208Pb target. The relativevelocity is chosenequalto v = 0:36c corresponding
to the experimental 68A MeV kinetic energy(5.2).

As for 11Be, the nuclear interaction betweenthe projectile and the target
is simulated usingan optical potential. In Sec.5.2.5,wesaw that the choiceof
this potential haslittle e�ect upon our calculations. Making useof this result,
we choose to use only one 14C-208Pb potential and one n-208Pb potential.
Their parametersare given in Table 6.3.

In Sec.5.2.6, we analysedthe in
uence of the choice of the tra jectory
upon the evolution calculations. We found out that straight lines could be
usedinsteadof hyperbolaswithout any signi�cant modi�cation of our results.
Following this, we perform our calculations for 15C using only straight-line
tra jectories.

15C and 11Be, although rather di�eren t physically speaking (di�eren t
binding energy, bound spectrum, etc.), are quite similar from a numerical
point of view. The study of the convergenceof the schemefor 15C leadsin-
deedto nearly the samenumericalparametersasthoseusedin the calculation
involving a 11Be projectile. Theseare displayed in Table 6.5 as a function
of the impact parameter. Besidesthoseparameters,it should be noted that
the wave function is discretisedover the radial quasiuniform meshobtained
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b< 30 30 < b< 50 50 < b< 100 100< b< 200

hb 1 1 1 2

N � , N ' 6, 11 4, 7 3, 5 3, 5

rN r , Nr 800,1000 800,800 800,800 600,600

Table 6.5: Valuesof the numerical parametersusedin the calculation of the
15C breakup on 208Pb with an initial velocity v = 0:36c which corresponds
to the 68A MeV energyof experiment [Nak03] (b, hb and rN r are expressed
in fm).

with the g2 distribution (seeSec.4.2.3) using a = 5 and x0 = 0:6. In this
casetoo, the time interval is chosenequal to [� 20 �h/MeV, 20 �h/MeV], and
the time step to � t = 0:02 �h/MeV. As in the study of the 11Be breakup, the
15C-208Pb interaction is purely Coulombic above b= 30 fm

We seethat the main di�erence betweenthis set of parametersand that
usedfor the study of 11Be breakup(seeTable5.5) is the fact that the impact
parameterinterval canbe limited to 200fm. With the aim of illustrating this,
we have represented in Fig. 6.4 the contributions to the breakupcrosssection
of the di�eren t impact-parameterintervals of Table6.5. For comparison,the
total crosssectionis pictured as well.
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Figure 6.4: Convergenceof the evolution calculation with respect to the
impact parameter upper bound. The total breakup cross section as well
as the contributions of each of the b intervals consideredin Table 6.5 are
represented as a function of the energy.

As for 11Be (see Fig. 5.6), we seethat the major contribution to the
breakup crosssection is due to the small impact parameters. However, the
convergencein b is much faster in this casethan for 11Be, and we seethat it
is achieved at b = 200 fm. This is mainly due to the larger binding energy
of 15C.
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Figure 6.5: Breakup crosssection(in b/MeV) of 15C on 208Pb at 68A MeV
asa function of the relative energybetweenthe projectile fragments. Calcu-
lations have beenperformedwith the nuclear optical potential of Table 6.3
(full line) and using a purely Coulombic potential with an impact parameter
cuto� bmin = 12:5 fm (dotted line). The crosssectioncomputedfor b> 30 fm
(dashedline) is alsodisplayed. The preliminary experimental data of [Nak03]
are represented by the open diamonds(total crosssection) and open circles
(b> 30 fm).

6.2.4 Results of the time-ev olution calculation

The breakup crosssection obtained from our evolution calculation is dis-
playedin Fig. 6.5(full line). The preliminary experimental data of Ref. [Nak03]
are also represented (open diamonds). We seethat our result agreesfairly
well with the experimental measurements. It seemshowever that the theoret-
ical valuesslightly overestimatethe data of Nakamura et al. near 0.5 MeV.

When we comparetheseresults with thoseobtained in Sec.5.2.4,we see
that the breakupcrosssectionof 15C is approximately 4 times lower than that
of 11Be. This is seenas resulting from the larger binding energyand/or the
smallerhalo structure of the former comparedwith the latter (seeSec.6.1.1).

We have also pictured the crosssection computed for tra jectories char-
acterisedby impact parametersb > 30 fm (dashedline). Thesevalueshave
beencalculated so as to compareour model with the corresponding exper-
imental data of Ref. [Nak03] (open circles). In this case,the result of our
calculation seemsto slightly overestimatethe valuesmeasuredby Nakamura
et al. As for the total crosssection, this discrepancyis maximum at low
energy.

This comparisonshows that our description of 15C leads to theoretical
breakup crosssectionswhich are in fair agreement with the experimental
data. This suggeststhat the con�guration in which the 15C ground state is
seenas a s1=2 neutron looselybound to a 14C core in its 0+ ground state is
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dominant in the 15C structure. This [0+ 
 s1=2] con�guration shouldtherefore
correspond to a spectroscopicfactor rather closeto unity. The fact that the
results of our calculation are above the experimental values for b > 30 fm
seemsto indicate the need of a spectroscopicfactor slightly smaller than
unity.

This agreeswith the preliminary analysisof this experiment performed
by Nakamura et al. As for 11Be, they have useda �rst order approximation
to extract the spectroscopicfactor corresponding to the [0+ 
 s1=2] con�g-
uration from the crosssectionsmeasuredfor b > 30 fm. They have found a
spectroscopicfactor of about 0.74 [Nak03b]. Fig. 6.6 illustrates the validit y
of the �rst-order approximation in this case. The crosssectionobtained at
the �rst-order (3.68) (dotted line) is indeedvery closeto that computedfrom
our calculations(dashedline). In this case,the experimental data are rather
well reproducedby the �rst-order calculation multiplied by 0.74(dash-dotted
line). This seemsto con�rm the spectroscopicfactor deducedby Nakamura
et al. However, sincethe data presented in Ref. [Nak03] are still preliminary,
precisestatements about this value have to wait for publication.
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Figure 6.6: Comparisonbetweenthe evolution calculation (dashedline) and
the �rst-order approximation (dotted line) for b > 30 fm. The latter is also
represented multiplied by the spectroscopicfactor 0.74 obtained by Naka-
mura et al. from the analysis of their experiment [Nak03, Nak03b] (dash-
dotted line). For comparisontheseexperimental data are plotted as well.

It should be noted that as for 11Be, the exact value of the spectroscopic
factor is still subject to controversy. For example, Data Pramanik et al.
[Dat03] derived spectroscopicfactor of 0:97� 0:08 from their measurement of
the 15C Coulomb breakupcrosssectionperformedat high energy. In [Sau00],
Sauvan et al. alsodeduceda largeadmixture of the [0+ 
 s1=2] con�guration.
Using a Glauber-like model, they found a value of 0.83. However, our result,
as well as the experimental onesmentioned above, contrast with the 0.49
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spectroscopicfactor obtained by Ozawa et al. This rather low value has
beenobtained from their analysisof the interaction crosssectionof 15C on a
carbon target [Oza01].

With the aim of con�rming the e�ect of the nuclear potentials upon
our results observed in Sec.5.2.5, we perform a calculation simulating the
projectile-target interaction with a purely Coulombic potential. The breakup
crosssection is plotted in Fig. 6.5 as a dotted line. The impact parameter
cuto� is chosen equal to bmin = 12:5 fm to reproduce the breakup cross
section computed with the optical potential in the peak region. We see,
however, that the breakup crosssection is underestimatedat high energy
with this choice of bmin . This meansthat, as for 11Be, the optimal cuto�
should vary with the energy. We have seenin Chapter 4 that the inclusion
of optical potentials is rather straightforward in our model. Moreover, the
choiceof thesepotentials doesnot seemsigni�cantly to in
uence our results
(seeSec.5.2.5). Therefore, it is logical to usethem to simulate the nuclear
interaction between the projectile and the target instead of a mere impact
parametercuto�.

In order to completethis study, let us have a look at the excitation cross
section � 0d5=2 of 15C. Fig. 6.7 displays the excitation probability computed
with the optical potential (full line) and that obtainedwith a purely Coulom-
bic projectile-target interaction. We seethat as observed in Sec.5.2.5, the
di�erence between both calculations vanishesabove b = 20 � 25 fm. This
di�erence consistsof a signi�cant enhancement of the excitation probabil-
it y near b = 10 fm when the optical potential is used. This e�ect is very
di�eren t from that observed for 11Be. We indeed saw that for this projec-
tile, the probabilities obtained with optical potentials are smaller than those
computedwith a Coulomb potential at all impact parameters.
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Figure 6.7: Inelastic probability of 15C asa function of the impact parameter
b. Resultsare obtained with the optical potential of Table 6.3 (full line) and
a purely Coulombic interaction (dotted line) between15C and 208Pb.
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Another di�erence betweenboth nuclei is that the inelastic probabilities
are smaller for 15C than for 11Be. As mentioned above, this is mainly due
to the fact that the dominant transition correspondsto an E2 multip ole for
15C while it is E1 for 11Be.

We also seethat the 15C excitation probabilities decreasemuch faster
with b. This is due to the larger excitation energy of this nucleus. From
the �rst-order approximation (3.57), we know that the decreaseis roughly
proportional to exp(� 2� E=�hv) where � E is the excitation energy. This
explains why the probabilities are still signi�cant at b = 300 fm for 11Be,
while they are almost negligibleat b= 30 fm for 15C.

The excitation crosssectionis obtainedby integrating the excitation prob-
abilities over b(3.41). The valueweobtain whenthe optical potential is taken
into account is 0.0164b. The crosssectioncomputedusing a pure Coulomb
potential is only 4.5 10� 4 b with a cuto� at bmin = 12:5 fm. This means
that the value obtained with the nuclear interaction cannot be reproduced
by a physically acceptableimpact parameter cuto�. Unfortunately, the ex-
citation crosssectionof 15C has not beenmeasuredyet. It would indeedbe
interesting to know whether the prediction of our model is accurate.

6.2.5 In
uence of the Pauli forbidden states

In Sec.5.2.7,we have seenthat the presenceof the Pauli-forbidden statesin
the Vcf potential doesnot signi�cantly in
uence the breakup of the 11Be. In
order to seewhether it is still the casehere,we perform the samestudy for
15C.

The Woods-Saxonpotential (WSP) which models 15C includesthree un-
physical states (see caption of Table 6.1). Using the transformations de-
scribed in Sec. 3.1.3, we construct a supersymmetric equivalent potential
(SEP). This potential exhibits the same scattering properties and bound
spectrum as the initial WSP but for the three Pauli-forbidden states,which
have beenremoved. In order to study the in
uence of theseforbidden states
upon our results, we perform, as in Sec.5.2.7, an evolution calculation us-
ing this SEP insteadof the initial WSP. The breakup crosssectionobtained
from this calculation is pictured in Fig. 6.8 (dotted line). For comparison,
the crosssectioncomputedusingthe WSP is alsorepresented (full line). The
contributions of the three dominant l j partial wavesare displayed as well.

As for 11Be, we seethat the modi�cation of the breakup crosssection
induced by the removal of the unphysical bound states is rather small. The
crosssection computed using the SEP is indeed only 2% larger than that
obtained with the initial WSP in the peak region. This slight increaseis
due to the rise of the p wavescontributions. This contrasts with the results
obtained for 11Be. We have indeedseenthat the elimination of the forbidden
states of 11Be leads to an increaseof the contribution of the p3=2 partial
waves,while it induceda reduction of that of the p1=2 waves. The in
uence
of this elimination onto the contribution of the s1=2 partial wavesis the same
in both cases:its value computedwith the SEP is identical to that obtained
with the WSP.
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Figure 6.8: In
uence of the Pauli forbidden statesof the 14C-n potential onto
the breakup crosssection. The dominant s1=2, p1=2 and p3=2 components
are indicated separately.

To understandthesee�ects, we calculatethe breakupcrosssectionat the
�rst-order approximation (3.68) usingboth the WSP and its supersymmetric
partner. The impact-parametercuto� is chosenequal to bmin = 12:5 fm, as
in Sec.6.2.4. The resultsof thesecalculationsaredisplayed in Fig. 6.9. Both
the p3=2 and p1=2 contributions are displayed as well.

This showsus that, asfor 11Be, the in
uence of the Pauli-forbidden states
upon the breakup of 15C can be qualitativ ely understood at the �rst-order
approximation. Indeed, the small increaseof the contributions of both the
p3=2 and p1=2 partial wavesis rather well reproducedin this approximation.
Using the samearguments as in Sec.5.2.7,we concludethat theseincreases
are due to the removal of onebound state in each of thesewaves.

In order to completethis analysis,we study the in
uence of the forbidden
bound states upon the excitation process.The inelastic probabilities P0d5=2

obtained using both the WSP and the SEP are depicted in Fig. 6.10 as a
function of b. As for 11Be, we seethat the removal of these states a�ects
more deeply the excitation of 15C than its breakup. The excitation cross
sectionobtained using the SEP is equal to 2.1810� 2 b, while that computed
with the WSP is of 1.6410� 2 b. As for 11Be, this substantial increaseof the
transition probability can be understood in the �rst-order approximation.
The removal of one node from the 1s1=2 state in a transition towards the
no-node 0d5=2 state leadsto an increaseof the radial integral appearing in
expression(3.57).

In this section,we have thus seenthat, as for 11Be, the presenceof Pauli
forbidden states in the Vcf potential describingthe projectile doesnot mod-
ify signi�cantly the breakup process. This result con�rms that the use of
deeppotential is fully justi�ed in such calculations. The inelastic excitation,
however, seemsto be more strongly a�ected by the presenceof thesestates.
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Figure 6.9: Analysis at the �rst-order perturbation approximation of the
in
uence of the Pauli forbidden statesonto the breakup crosssectionof 15C
on 208Pb. Both p1=2 and p3=2 components are indicated separately.
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Figure 6.10: In
uence of the Pauli forbiddenstatesupon the inelasticprocess.
The excitation probability to the 0d5=2 excited state of 15C is plotted as a
function of b. Calculations have been performed with both the WSP (full
line) and the SEP (dotted line).



Chapter 7

A charged case: 8B

In this chapter, we turn to the study of the Coulomb breakupof 8B. As seen
in Chapter 1, this nucleusis a candidateone-protonhalo nucleus.

The Coulomb breakup of 8B has beenextensively studied both theoreti-
cally [EB96, TWB97, TNT01, MTT02, Mor01] and experimentally [Mot94,
Dav01]. It is therefore interesting to analysethe results of our calculations
with regard to thesepreviousresults.

Besidesthe fact that this reaction can provide information about the
possiblehalo structure of 8B, the Coulomb breakup of this nucleusarouses
great interest becauseof its astrophysical application. It is indeed used to
simulate the inversereaction of the radiative capture of oneproton by a 7Be:
7Be(p,
 )8B.

This capture is one of the nuclear reactions that take place in the sun.
An accuratevalue of its crosssectionis thereforerequired in order to obtain
an accuratesolar model. It has beencalculated using a microscopicmodel
by Descouvemont and Baye [DB94]. Unfortunately, the direct measurement
of this cross section at the (very) low solar energiesis very di�cult due
to the Coulomb repulsion between the proton and the 7Be (seee.g. Refs.
[Ham01, Jun02] for recent measurements). It has been proposedthat the
study of the inversereaction (simulated by the 8B Coulomb breakup) could
provide information about this radiative capture reaction (seeRef. [BR96]
for a review). However, this meansthat the Coulomb breakup of 8B must
be very well understood. This explains the numerouscurrent studieson the
subject.

In the �rst sectionof this chapter, the theoretical model of the 8B nucleus
is detailed. This sectionalsocontains the descriptionof the optical potentials
usedto simulate the nuclearinteraction betweenthe projectile and the target.
The secondsectionexaminesthe results obtained with our model, and their
comparisonwith experimental data.

123
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J � Eexp (MeV) nl j E th (MeV)

2+ -0.137 0p3=2 -0.1373

Table 7.1: Experimental bound-state energy(Eexp), and quantum numbers
J � of the 8B [Ajz88] (left part). The theoretical energy(E th ) and quantum
numbersnl j obtained with the parametersof Table7.2 are alsolisted (right-
hand side). The singleforbidden state obtainedwith this potential is a 0s1=2
state at -14.86MeV.

7.1 Theoretical mo del

7.1.1 Description of 8B

The bound spectrum of 8B comprisesonly one state (seeleft-hand side of
Table7.1). This ground state is a J � = 2+ state, which lies at solely137keV
from the one-neutronthreshold [Ajz88]. It is this very low binding energy
that led physicists to suspect a one-proton halo in this nucleus. However,
this structure is not obvious from the microscopiccalculation performed in
Ref. [BDT94]. Nevertheless,in the present study, as in other calculationsof
the breakup of 8B [EB96, TWB97, TNT01, MTT02, Mor01], this nucleusis
seenas a proton looselybound to a 7Be core.

This nucleus is therefore seenas a 7Be core in its 3
2

� ground state sur-
roundedby a looselybound p3=2 proton. As explainedin Sec.3.1.1,the spin
of the core is not taken into account in our calculation. In this model it is
thereforeassumedto be nil.

This two-body structure is modeled, as explained in Sec. 3.1.1, using
a potential with a Woods-Saxonform factor including a spin-orbit coupling
term. Table7.2displays the valuesof the parametersusedin this case.These
valuesare adapted from Ref. [MTT02] (the potential usedin this reference
is in fact a simpli�ed version of the model used in [EB96]). It should be
noted that, unlike in the previous cases,the depth of the central term Vl is
the samefor all partial waves.

Vl (MeV) VLS (MeV fm2) a (fm) R0 (MeV)
44.97 17.60 0.52 2.391

Table 7.2: Parametersof the 7Be-p potential (seeSec.3.1.1 for the detailed
expressionof the parametrisation).

The groundstate energyobtainedwith this potential is given in the right-
hand sideof Table7.1. Besidesthis physicalstate, the potential includesonly
one forbidden state (seethe caption of Table 7.1). It should be noted that,
asthe spin of the coreis neglected,the 0+ , 1+ and 3+ statescorresponding to
the coupling of this spin and the 3=2 angular momentum of the halo proton
are degeneratewith the 2+ ground state. This meansthat, in this model,
the resonant statesof 8B are not reproduced(seeRef. [Ajz88]).
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Using this potential, the rms radius of the two-body structure in its phys-
ical ground state is equal to 4.233 fm. The probability of presenceof the
proton beyond the classicalturning point is of 39%. Thesevalues, though
large when comparedto the rangeof the nuclear potential, are smaller than
thoseobtained for 11Be (seeSec.5.1.1). This is mainly due to the presenceof
a repulsive Coulomb term in the 7Be-p potential (cf Sec.1.3). Nevertheless,
the probability of presenceof the proton outside the potential well is similar
to that obtained for 15C. This suggeststhat, as for 15C, our modelling of 8B
leadsto a smaller halo structure than for 11Be.

7.1.2 Pro jectile-target poten tials

In order to simulate the interaction betweenthe projectile components and
the target, we useoptical potentials, as explained in Sec.3.2. In this case,
following Mortimer et al. [MTT02], we simulate the 7Be-208Pb interaction
by using of the potential proposedby Cook [Coo82]. This potential has in
fact beendeveloped for a 7Li projectile. Since 7Li is the mirror nucleusof
7Be, we presumethat this potential, with a modi�ed Coulomb term, is well
suited to model the interaction betweenthe 7Be core and the 208Pb target.
As for the neutron-halo cases,we use the Becchetti and Greenleesoptical
potential [BG69] to simulate the p-208Pb nuclear interaction. The value of
the energyhasbeenchosenequal to 44 MeV so as to comparethe results of
our calculationswith the experimental data of Davids et al. [Dav01].

The valuesof the parametersof the correspondingpotentials aredisplayed
in Table 7.3. It should be noted that, unlike the n-208Pb potential (see
Sec.5.1.2), the p-208Pb optical potential includesan imaginary surfaceterm.

c or f V W WD RR RI = RD aR aI = aD RC
8B 114.2 9.44 0 7.62 10.30 0.853 0.809 7.70
p 50.5 6.98 13.35 6.93 7.82 0.75 0.66 7.41

Table 7.3: Parametersof the p-208Pb [BG69] and 7Be-208Pb [Coo82] optical
potentials (seeSec.3.2 for the detailed expressionof the parametrisation).
Depths are expressedin MeV while radii and di�usenessesare in fm.

7.2 Evolution calculation

7.2.1 Conditions of the calculation

As already mentioned, the Coulomb breakup of 8B hasbeenstudied experi-
mentally by Davids et al. [Dav01]. They useda 44A MeV 8B beamimpinging
upon a 208Pb target.

In order to compare our results with these experimental data and to
the related theoretical studies [Mor01, MTT02], we perform evolution cal-
culations using the potentials described in the previous sections. As in the
previouscases,the nuclearpotential is negligiblefor b> 30 fm. The relative
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b< 14 14 < b< 30 30 < b< 50 50 < b< 70

hb 1 2 2 2
N � , N ' 8, 15 8, 15 7, 13 6, 11
rN r , Nr 800,800 800,800 800,800 700,700

70 < b< 90 90 < b< 150 150< b< 210

hb 2 4 4
N � , N ' 5, 9 4, 7 3, 5
rN r , Nr 700,700 600,600 400,400

Table 7.4: Valuesof the numerical parametersusedin the calculation of the
8B breakup on 208Pb with an initial velocity v = 0:3c which corresponds to
the 44A MeV energyof experiment [Dav01] (b, hb and rN r are expressedin
fm).

motion betweenthe 8B projectile and the 208Pb target is modelled,herealso,
by straight-line tra jectories. The relativevelocity is chosenequalto v = 0:3c.
This value corresponds to the 44A MeV kinetic energyof Ref. [Dav01] (see
Eq. (5.2)).

As for 11Be and 15C, the radial variable is discretisedover the quasiuni-
form grid obtained with the g2 distribution consideringa = 5 and x0 = 0:6
(seeSec.4.2.3). The calculations are performed from t in = � 20 �h/MeV to
tout = 20 �h/MeV with a time step � t = 0:02 �h/MeV (seeSec.4.3.6). The
other numerical parametersvary with the impact parameterb. Their values
are summarisedin Table 7.4.

The major di�erence betweenthe present convergenceanalysisand that
performed in the previous caseslies in the valuesof the number of angular
functions N � and N ' . We indeedseethat in this case,thesevaluesare sub-
stantially larger than thoseusedfor the study of 11Be and 15C (seeSec.5.2.3
and Sec.6.2.3 respectively). Furthermore, the decreaseof N � and N ' with
b is much slower in this study. This meansthat, during the evolution calcu-
lation, partial wavesof 8B corresponding to a high orbital momentum l are
signi�cantly populated, even at high impact parameters.

Sincethe nuclearpotential is negligibleaboveb> 30fm, this e�ect cannot
be related to the optical potentials detailed in Sec.7.1.2. Moreover, the same
parametersare obtained when no nuclear interaction is consideredbetween
the projectile and the target.

In order to explain this e�ect, let us have a look at the results obtained
at the �rst-order approximation (see Sec. 3.4.3). From Eqs. (3.56) and
(3.59), we seethat the di�eren t multip oles E� contribute to the breakup
crosssection proportionally to the squareof the e�ectiv e charge e� (3.60).
From this expression,we seethat consideringa charged fragment leads to
an increaseof e2 while e1 decreases.It seemstherefore that this e�ect can
be understood as a substantial contribution of the E2 transitions in this
reaction. This con�rms the previous analyses[EB96, MTT02] which also
found that E2 transitions play a signi�cant role in the Coulomb breakup of
8B.
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Figure 7.1: Breakupcrosssection(in b/MeV) of 8B on 208Pb at 44A MeV asa
function of the relativeenergybetweenthe projectile fragments. Calculations
have been performed with the nuclear optical potential of Table 7.3 (full
line) and using a purely Coulomb potential with an impact parametercuto�
bmin = 12 fm (dotted line). Experimental data are from Ref. [Mot94].

Since these high values of N � and N ' lead to a signi�cant increaseof
both the computational time and the required memory space,we decidedto
diminish the number of calculation by increasinghb. This explainswhy the
impact parameterstep is chosenlarger in this case.

7.2.2 Total breakup cross section

Within the calculation conditions described in the previoussection,we have
performed evolution calculations. The breakup crosssectionobtained from
the results of thesecalculations is depicted in Fig. 7.1 as a function of the
relativeenergybetweenthe proton and the 7Be coreafter breakup. The cross
sectionobtained using the optical potentials detailed in Sec.7.1.2 is plotted
as a full line. The dotted line represents the crosssectioncomputed with a
purely Coulomb interaction between the projectile and the target. In that
case,the nuclear interaction is simulated by an impact parameter cuto� at
bmin = 12 fm.

Unfortunately, these values have not been measuredby Davids et al.
[Dav01]. In order to compareour calculations with experimental data, we
displayed the breakupcrosssectionmeasuredby Motobayashiet al. [Mot94].
Their experiment hasbeenperformedfor a 8B projectile impinging on a 208Pb
target at an energyof 46:5A MeV. Sincethis energydoesnot strongly di�er
from that of [Dav01], theseexperimental data should be comparableto our
calculations.

We �rstly seethat the magnitude of the crosssectionis the sameas that
obtained for the 15C nucleus(seeSec.6.2.4). This is consistent with the fact
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that the nuclearmodel we considerfor both nuclei leadsto a lesspronounced
halo structure than for 11Be.

The comparisonof our calculations with the crosssection measuredby
Motobayashi et al. [Mot94] indicates that the agreement between theory
and experiment is lessgood in this casethan for 11Be and 15C (seeSec.5.2.4
and Sec.6.2.4). Since the decreaseof the experimental crosssection with
the energy is faster than that observed in our calculation, it seemsthat
a spectroscopicfactor may not be the only explanation of this discrepancy.
The calculation of Esbensenand Bertsch [EB96] reproducesthe experimental
data of Motobayashi et al. fairly well. It has been performed at the �rst-
order approximation including both E1 and E2 multip olesusing a channel-
dependent potential to model 8B. This potential, which takes into account
the spin of the 7Be core,enablesthem to reproducenot only the groundstate
energybut also that of someresonant states. This suggeststhat our simple
two-body modelling of 8B may not be su�cien tly accurate.

It shouldbenoted that, unlike in the neutron-halocases,the crosssection
computed with a purely Coulomb interaction is very closeto that obtained
usingthe nuclearoptical potentials. This meansthat in this case,an optimal
impact-parametercuto� canbe found for all energies.In order to understand
this, let ushavea look at the breakupprobabilities obtainedwith andwithout
optical potentials. Fig. 7.2 displays the breakup probabilities computed at
three di�eren t energies(E = 0:5 MeV, 1.0 MeV, and 1.5 MeV).
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Figure 7.2: In
uence of the nuclearpotential upon the breakupprobability of
8B on a 208Pb target. Calculationsare performedwith the optical potentials
given in Table 7.3 (full lines), and with a purely Coulomb projectile-target
potential (dotted lines).

These results are rather similar to those obtained for a 11Be projectile
(seeSec.5.2.5). However, they di�er in the relative position of the probabil-
ities obtained with the optical potentials and those obtained with a purely
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Coulomb interaction. For 11Be, we saw that the useof an optical potential
can lead to a signi�cant increaseof the breakup probability. This one can
thereforebe larger than that computedwith the purely Coulomb interaction
at someimpact parameters.We alsosaw that this behaviour is strongly en-
ergy dependent (seeFig. 5.9). On the other hand, we seethat, in this case,
the breakup probabilities obtained with the optical potentials are smaller
that those with the purely Coulomb interaction at all impact parameters,
and all energies.

This di�erence explainswhy no optimal impact-parametercuto� can be
found in the neutron-halo cases,while a cuto� at bmin = 12 fm gives very
good results for 8B at all energies.

We saw that the increasementioned above for the 11Be projectile is due
to the introduction of the nuclear interaction betweenits halo neutron and
the target. The fact that this e�ect is not observed in the present casecan
thereforebe seenasdue to the Coulomb interaction betweenthe halo proton
and the 208Pb target. This interaction does indeedhinder the e�ects of the
nuclear interaction, leading to a minor e�ect of the optical potentials.

7.2.3 Parallel momen tum distribution

In the beginningof this chapter, we have seenthat oneof the main interests
of the 8B Coulomb breakup is that it simulates the inversereaction of the
radiative capture 7Be(p,
 )8B. It has been proposed[BR96] that the cross
sectionof this radiative capture canbe inferred from that of the 8B Coulomb
breakup. However, the di�eren t multip olesdo not contribute with the same
amplitude in both reactions [EB96]. At the solar energies,the radiative
capture is indeeddominated by E1 transitions while the Coulomb breakup
of 8B includesa signi�cant E2 contribution, asseenin Sec.7.2.1. Moreover,
the higher-order e�ects, as well as the nuclear interaction, have also to be
taken into account in the comparisonbetweenboth processes.

In order to extract information about the radiative capture from the
breakup reaction, it is of importance to disentangle these di�eren t e�ects.
This meansthat an accuratedescription of the reaction is required.

Unfortunately, the breakup crosssection is not well suited to gaugethe
relative amplitude of the E1 and E2 contributions. However, the parallel
momentum distribution is rather sensitive to the interferencebetweenboth
contributions [EB96]. The inclusion of the E2 transitions leadsto an asym-
metric distribution that is not obtained if only the E1 contribution is taken
into account [EB96]. Recently, an experiment has beenconductedto mea-
surethis distribution [Dav01]. It indeedpresents an asymmetryaspredicted
theoretically. An asymmetry is alsoobtained in more recent theoretical cal-
culations [Mor01, MTT02]. However, none of them is able to fairly repro-
duce the experimental data. The �rst-order calculations [Mor01] lead to an
overestimationof the asymmetry, while CDCC calculations[Mor01, MTT02]
underestimatethis asymmetry.

In this section,we comparethe parallel momentum distribution obtained
from our evolution calculations to the experimental data of Davids et al.
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[Dav01]. For this, we make use of the formulae detailed in Sec.3.4. How-
ever, theseformulaegive us the momentum distribution in the projectile rest
frame. In order to compareour valuesto the experimental ones,we needto
compute the momentum distribution in the laboratory frame.

The momentum of the core is given by

pc = � �hk +
mc

mP
�hK +

mc

mT + mP
P tot ; (7.1)

where k is the wave vector of the relative motion of the core c and the
fragment f , K is the wave vector of the relative motion of the projectile
centre of massand the target T, and P tot is the total momentum of the
three-body system.

As mentioned earlier, weconsiderstraight-line tra jectoriesto describe the
relative motion of the projectile and the target. For consistence,we make
the sameassumption here. That is to say that we presumethat both K
and P tot are aligned with the z-axis. This axis is chosenalong the beam
direction. We alsotreat K asa constant (i.e. we neglectits variation due to
the energytransfer to the projectile intrinsic motion). This value is chosen
equal to its initial value

�hK 1z =
mT

mT + mP
Ptot 1z; (7.2)

where the total momentum is obtained from the incident kinetic energyTi

using the classicalformula

Ptot =
q

2Ti mP : (7.3)

Under theseassumptions,(7.1) can be rewritten as

pc = � �hk + P01z; (7.4)

where

P0 =
mc

mP

q
2Ti mP : (7.5)

From (3.54) and (7.4), we can obtain the distribution of the parallel mo-
mentum of the core in the laboratory frame:

d�
dpck

(pck) = �h� 1 d�
dkk

 
P0 � pck

�h

!

: (7.6)

The measurements of Davids et al. [Dav01] are limited to the forward
angles.This meansthat they only consideredreactionsin which the core is
emitted at a scattering angle below somemaximum value � max

c . This puts
a constraint on the perpendicular component of pc. Therefore, the integral
over k? appearing in the calculation of the parallel momentum distribution
(3.51) is limited to a maximum value kmax

? . Considering(7.4), we obtain

kmax
? = (P0 � �hkk) tan(� max

c ): (7.7)
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Figure 7.3: Parallel momentum distribution of the 7Be core after breakup
of 44A MeV 8B on 208Pb. Experimental data are from Ref. [Dav01]. The
theoretical curvesare translated in abscissato concur with the experiment.

Sincethis expressionhasbeenobtainedconsideringstraight-line tra jectories,
the de
ection of the projectile centre of massis not taken into account. This
approximation, though acceptableat largeimpact parameters,is not valid for
small impact parameters,wherethe curvature of the Rutherford tra jectories
is signi�cant. However, in this preliminary analysisof our results, we make
this assumptionfor simplicity.

Parallel momentum distributions obtainedwith our evolution calculations
are displayed in Fig. 7.3. They are computed for three di�eren t 7Be scat-
tering angle cuts: � max

c = 1:5� , 2:4� , and 3:5� . Theseanglescorrespond to
the experimental values of Ref. [Dav01]. The theoretical distributions are
computed using either the optical potentials of Table 7.3 (full lines) or an
impact parameter cuto� at bmin = 12 fm (dotted lines). The experimental
data are displayed as well.

It should be noted that the expressionof P0 (7.5) doesnot take into ac-
count the energyand momentum transfersto the projectile intrinsic motion,
neither doesit account for the relativistic e�ects. Therefore,the momentum
distributions computedwith this value of P0 (i.e. 2012MeV/ c) do not con-
cur with the experimental ones. In order to obtain distributions comparable
to the experimental data, we chooseP0 = 2030MeV/ c, which corresponds
more or lessto the centre of the experimental distributions.

The distributions we obtain qualitativ ely agreewith the experimental re-
sults. That is to say that their widths and amplitudesareof the sameorderof
magnitude asthe experimental ones.However, the quality of this agreement
is far from thoseobtained for 11Be and 15C (seeChapters 5 and 6). Besides
the fact that the widths and amplitudes of the theoretical distributions are
not exactly thoseof the experimental data, our calculationsfail to reproduce
the asymmetry of thesedata.
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This discrepancybetween theory and experiment is most likely due to
the fact that the de
ection of the projectile centre of massis not taken into
account in our calculation of the parallel-momentum distribution. This is
suggestedby the increaseof the discrepancyat low scattering angle cuts.
For theseangles,neglectingthe curvature of the classicaltra jectory is indeed
more controversial.

This discrepancymight also be seenas due to our modelling of 8B. As
already mentioned, the 8B model we useis rather simple. It might therefore
not be su�cien tly accurate for thesecalculations. However, in order to in-
vestigate further in this way, we �rst have to eliminate the uncertainty due
to our inaccuratecalculation of the distribution.

Furthermore, in order to takethe de
ection of the projectile centre of mass
fully into account, the calculations should be performed using Rutherford
tra jectories instead of straight lines. However, the approximation of the hy-
perbolasby straight linesin the resolutionof the time-dependent Schr•odinger
equationshouldbe lesscritical than in the calculation of pc, assuggestedby
the analysisperformedin Sec.5.2.6.

It should be noted that, as in the computation of the breakup cross
section, the in
uence of the nuclear optical potentials upon our results is
rather small. The distribution obtained with these potentials are slightly
more asymmetric than those computed with the purely Coulomb interac-
tion. Contrary to the resultsobtained in Ref. [Mor01], it doesnot seemthat
the introduction of the nuclear interaction leads to a substantial broaden-
ing of the distribution. However, thesee�ects are completely negligible in
comparisonwith the discrepancybetweenour results and the experimental
ones.

In this chapter, we have thus performed an analysis of the breakup of
8B on 208Pb using the method described in Chapters 3 and 4. This analysis
enabledus to con�rm the signi�cant role played by the E2 transitions in this
reaction. We also saw that, unlike in the neutron halo cases,the nuclear
interaction between the projectile and the target is fairly simulated by an
impact parameter cuto�. This is understood by the fact that the Coulomb
repulsionbetweenthe halo proton and the target hinders the nucleare�ects.
The comparisonbetweenour calculationsand the breakupcrosssectionmea-
suredby Motobayashi et al. [Mot94] seemsto indicate that our model of 8B
is not accurateenough. Unfortunately, our analysisof the parallel momen-
tum distribution is too inaccurateto compareour results with the currently
available experimental data [Dav01]. This meansthat no conclusionabout
the accuracyof our method and of our modelling of the 8B nucleuscan be
drawn. However, it seemsthat, even with our simple calculation of the par-
allel momentum distributions, we can reproducethe amplitude and width of
thosedistributions.



Conclusion

In this work, wehavepresented a theoreticalmethod for studying the Coulomb
breakup of one-nucleonhalo nuclei. This method is basedupon a semiclas-
sical approximation in which the projectile is assumedto follow a classical
tra jectory [AW75]. In this approximation, the projectile is seenasevolving in
a time-varying potential simulating its interaction with the target. This leads
to the resolution of a time-dependent Schr•odingerequation for the projectile
wave function [KYS94, EBB95, MB99].

In our method, the halo nucleusis described, as in many current models,
with a two-body structure: a pointlik e nucleon linked to a pointlik e core.
The spin of the former is 1=2, while the latter is assumedto be in a 0+ state.
In the present state of our model, the interaction betweenthe two clusters
is modelled by a local potential. The general form factor of this potential
enablesus to reproduceaccurately the bound spectrum of the nucleus.

The main idea of the method is to expand the projectile wave func-
tion onto an angular Lagrange mesh and to discretise the radial variable
over a quasiuniform grid [MB99, CBM03b]. The advantage of this three-
dimensionalmeshis that the representation of the time-dependent potential
is fully diagonal. Moreover, the matrix elements of this potential merely
consistof the valuesof the potential at the meshpoints. This meansthat its
treatment is very straightforward, and that the nuclear interaction between
the projectile and the target may be simulated by optical potentials without
any further analytical treatment. Furthermore, a simple basischangeleads
to a band representation of the Hamiltonian modelling the internal structure
of the halo nucleus. This expansionis then usedto derive an evolution algo-
rithm in which the e�ect of the time-dependent potential and of the projectile
Hamiltonian are taken into account separately.

In this work, several aspects of this method have beenanalysedso as to
assessthe validit y of someof the assumptionswe make. Firstly, we have
studied the modelling of the nuclear interaction betweenthe projectile and
the target. It has been shown that, in the caseof halo neutrons, a mere
impact-parameter cuto� cannot reproduce the e�ect of optical potentials
at all energies. This suggeststhat an accuratedescription of the Coulomb
breakup of one-neutron halo nuclei should include a precisemodelling of
the nuclear interaction. For proton-halo nuclei, however, it seemsthat the
e�ect of the nuclear interaction can be rather well reproducedby an impact-
parametercuto�. This is dueto the fact that the nuclearinteraction between
the halo proton and the target is hinderedby the Coulomb interaction.
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Secondly, we have analysedthe validit y of the approximation which con-
sists in using straight lines instead of the Rutherford tra jectories. This ap-
proximation seemsto be legitimate at the energiesconsideredin our model
for the calculation of the breakup crosssection. However, the curvature of
the tra jectory must be taken into account when calculating the momentum
distribution.

Finally, we have studied the in
uence of the presenceof Pauli-forbidden
states in our model of the halo nucleus. Thesestates are obtained when a
deeppotential is usedto model the core-halointeraction. They simulate the
Pauli principle betweenthe halo nucleonand the nucleonsof the core. Since
the results of our calculations are not strongly modi�ed when thesestates
are removed, we conclude that their presencemay be ignored in breakup
calculations[CBM03a].

Making use of these results, we have studied the Coulomb breakup of
three nuclei: 11Be, 15C and 8B. 11Be is the best known one-neutron halo
nucleus. Its Coulomb breakuphasbeenextensively studied both experimen-
tally [Nak94, Nak03] and theoretically [KYS96, MB99, TS01b]. Nevertheless,
someuncertainty remainsabout the structure of its groundstate. Most of the
studiessuggestthat this structure is dominated by a con�guration in which
a s1=2 neutron is looselybound to 10Be corein its 0+ ground state. However,
the exactvalueof the correspondingspectroscopicfactor is still controversial.
The good agreement betweenour calculationsand the experimental data of
[Nak03] suggeststhat it should be closeto unity. However, the preliminary
analysis of this experiment, as well as another recent breakup experiment
[Pal03], lead to a lower spectroscopicfactor. The comparisonbetween the
value of [Nak03] and that obtained from our calculation will have to wait for
the publication of thesedata.

15C is a candidate one-neutron halo nucleus whose Coulomb breakup
has just been studied experimentally [Nak03]. The breakup crosssections
computed with our model are in good agreement with the preliminary ex-
perimental data. It seemstherefore that our model describes this reaction
fairly well. Since15C is seenasa 14C corein its 0+ ground state surrounded
by a s1=2 neutron, the analysisof our resultssuggeststhat the spectroscopic
factor corresponding to this con�guration shouldbeslightly lower than unity.
However, no precisevalue of the spectroscopicfactor may be extracted from
this study beforethe publication of the experimental data.

8B is of particular interest from two points of view. Firstly, it is a one-
proton halo candidate. Secondly, its Coulomb breakup may be related to
the inversereaction of the 7Be(p,
 )8B radiative capture that takesplace in
the sun [BR96]. We have compared the parallel momentum distributions
obtained with our model with the experimental data of Ref. [Dav01]. We
have seenthat the theoretical distributions agreequalitativ ely in width and
magnitude with the experimental ones.However, no quantitativ e agreement
could beobtained. Moreover, the asymmetryobservedexperimentally, which
is characteristic of the distribution, could not be reproducedwith our model.
This has beenunderstood as an inaccuracy in our calculation of the distri-
bution. Therefore,no conclusioncould be drawn about the pertinenceof the
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two-body model of 8B.
In this work, we have developed an accuratesemiclassicaldescription of

the Coulomb breakup of one-nucleonhalo nuclei. Thesenuclei are currently
modelled by a two-body structure. Since the method does not restrict to
fragments with 1/2 spin, it could be usedto study the breakupof other two-
body projectiles. However, in our model, the core is assumedto be spinless.
In order to apply our method to more generalnuclei, this model should be
extendedto coreshaving a spin di�eren t from zero.

This technique allows an accurateand straightforward modelling of the
nuclear interaction between the projectile and the target. Although it has
beenusedonly for the study of Coulomb breakup, this method could alsobe
appliedto analysenuclear-inducedbreakup. This meansthat the dissociation
of halo nuclei on light targets could be investigatedwith our method aswell.

In the future, besidesthe extensionsof our method mentioned above, we
plan to improve the projectile description. In order to extract information
about the halo structure from the breakupreactions,it would beof particular
interest to test other modellingsof the halo nuclei than the simple two-body
model usedup to now. For example,including a descriptionwhich takesinto
account the excitation of the corewould lead to a signi�cant improvement of
the method.

Furthermore, the extension of this semiclassicalmodel to two-neutron
halo nuclei is conceivable. However, this cannot be achieved without im-
proving signi�cantly the time-evolution algorithm so as to reach a�ordable
computational times.
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App endix A

Calculation of the time
in tegrals I q

�

In Sec.3.4.3,we have seenthat the �rst-order approximation of the breakup
andexcitation probabilities includean integral over the time (3.66). Thesein-
tegralscan be calculatedanalytically rather easilyfor dipole and quadrupole
transitions when straight-line tra jectories are considered. In this appendix,
we detail the calculation of theseintegrals.

For straight-line tra jectories,the coordinate of the target in the projectile
rest frame R (t) can be expressedwith (3.33). Using the coordinate system
de�ned by (3.34), 
 R(t) = (� R(t); ' R(t)) is given by

cos� R(t) =
vt

p
b2 + v2t2

(A.1)

sin� R(t) =
b

p
b2 + v2t2

(A.2)

' R(t) = 0: (A.3)

This implies that

Y 0
1 (
 R(t)) =

s
3

4�
vt

p
b2 + v2t2

(A.4)

Y � 1
1 (
 R(t)) =

s
3

8�
� b

p
b2 + v2t2

: (A.5)

Using (A.4) and (A.5) with [AS70, relations 9.6.25],we obtain

I q
1(! ) =

8
<

:

2
q

3
4�

!
v2 iK 0(x) for q = 0

� 2
q

3
8�

!
v2 K 1(x) for q = � 1

(A.6)

where x = ! b=v, and K 0 and K 1 are modi�ed Besselfunctions [AS70, pp
374-379].

We alsohave

Y 0
2 (
 R(t)) =

s
5

16�
2v2t2 � b2

b2 + v2t2
(A.7)
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�

Y � 1
2 (
 R(t)) =

s
15
8�

� bvt
b2 + v2t2

(A.8)

Y � 2
2 (
 R(t)) =

s
15

32�
b2

b2 + v2t2
: (A.9)

Using theseexpressionsand [AS70, relations 9.6.25and 9.6.26],we obtain

I q
2(! ) =

8
>>><

>>>:

�
q

5
4�

! 2

v3 K 0(x) for q = 0

� i
q

5
6�

! 2

v3 K 1(x) for q = � 1
q

5
24�

! 2

v3 K 2(x) for q = � 2

(A.10)

Theseresults enableus to calculate the expressions(3.67) and (3.69) of
Sec.3.4.3.



App endix B

Storage of the wave functions
and the Hamiltonian terms

This appendix examinesthe practical aspect of the storage of the wave-
function components and the Hamiltonian matrices cH0 and bV described in
Sec.4.1.4. The main problem we are facedwith is the storageof the wave
function expressedin the spherical-harmonicbasis. In Chapter 4, we have
indeedseenthat, in this basis,the projectile Hamiltonian H 0 is represented
by a band matrix cH0. Sincethe bandwidth dependsstrongly on the ordering
of the wave-function components, it is very important to �nd a suitable
storageso as to reducethe matrix size.

In the Lagrangebasis,the problem of the storageof the wave function is
much simpler. Sincethe matrix bV representing the time-dependent potential
is fully diagonal,the orderingof the components is indeednot very important.

In Sec.4.1, we have seenthat in the spherical-harmonicbasis,the wave-
function components (4.28) depend on three quantum numbers: the orbital
momentum l, its projection ml , and the spin projection mI . We also know
that the radial variable is discretisedupon a quasiuniformmesh(seeSec.4.2).
Therefore, the radial dependenceof the wave function is represented by an
index j r that denotesthe position in the radial grid. This meansthat the
value of the wave function is fully determined by four numbers (the three
quantum numbersand the radial index).

In our implementation of the algorithm described in Chapter 4, the
wave function is stored in a one-dimensionarray. The size of this array
is N Nr (2I + 1), whereN is the number of angular functions (seeSec.4.1.3),
Nr is the number of radial points, and (2I + 1) is the number of possible
projections of the fragment spin I . In order to �nd an appropriate ordering
of numbers l, ml , mI and j r , let us have a look back at the elements of cH0

(4.50):

cH
m I m0

I
0� j r ;� 0j 0

r
=

(

�
�h2

2�

"

d(2)
j r j 0

r
�

l (l + 1)
r 2

j r

� j r j 0
r

#

+ V0(r )� j r j 0
r

)

� m I m0
I
� � � 0

+ hlml I mI jL � I jlm0
l I m0

I i VLI (r j r )� j r j 0
r
� m l + m I m0

l + m0
I
� l l0; (B.1)

where d(2)
j r j 0

r
correspond to the matrix elements of the discretisation of the

radial di�eren tial-operator (4.49).
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From (B.1), we know that cH0 is diagonal with respect to the orbital
momentum l and the projection of the total angular-momentum m = m l + mI .
The wave-function components should thereforebe storedaccordingto these
good quantum numbers. The two remaining numbers,mI (or ml ) and j r are
linked to the sourcesof the non-diagonalterms of cH0: the spin dependence
of the core-fragment potential (3.5), and the �nite-di�erence approximation
of the di�eren tial-operator (4.48).

With the aim of reducing the bandwidth of cH0 as much as possible,we
order those numbers in the following sequence,from the slowest varying to
the fastest varying:

(l ; m; j r ; mI ): (B.2)

This meansthat for each value of l , we considerall the possiblevaluesof m,
for each value of which we considerevery radial-mesh points, and at each
radial point, we considerall the possiblevalues of the spin projection mI .
The value of ml is deducedfrom thoseof m and mI (ml = m � mI ).

The general structure of cH0 obtained with this ordering, is a block-
diagonalmatrix (seeFig. B.1). Each of thoseblocks correspondsto a certain
valueof l and m. They can be seenasmatricesof small blocks referredto by
the coupleof radial indices(j r ; j 0

r ). Thesesmall blocks correspond indeedto
squarematrices whoseelements are composedof the matrix elements (B.1)
corresponding to radial indices(j r ; j 0

r ) evaluated at �xed l and m for all the
possiblecouplesof spin projections (mI ; m0

I ). The size of the small blocks
(j r ; j 0

r ), depending on the number of possiblevaluesof the spin projection,
varies from oneblock (l ; m) to another.

From (B.1) we seethat the small blocks (j r ; j 0
r ) are full of zerosfor j 0

r <
j r � Nd and j 0

r > j r + Nd. This means that the blocks (l ; m) exhibit a
(2Nd + 1)-band structure (seeFig. B.2).

The non-zerosmall blocks (j r ; j 0
r ) which areo�-diagonal (i.e. with j r 6= j 0

r )
correspond to the non-central terms of the �nite-di�erence formulae (4.49).
Since the di�eren tial operator does not depend on mI , these o�-diagonal
small-blocks are diagonalmatrices.

The small blocks (j r ; j r ) (i.e. thoselying on the diagonal) are full. Their
diagonal elements contain the central part of the core-fragment potential,
the diagonal elements of the spin-dependent part of this potential, and the
central term of the �nite-di�erence formulae. Their o�-diagonal elements
correspond to the non-diagonalelements of the spin-dependent part of the
core-fragment potential. All theseelements are, of course,evaluated at r j r .

The precedingremarksshow that the ordering (B.2) of the wave-function
components leads to a block-diagonal structure of cH0. Each block corre-
spondsto a certain valueof l and m and exhibits a band structure. Sincethe
number of possiblevaluesof mI is a function of l and m, the bandwidth varies
from oneblock to another. For example,consideringa fragment spin I = 1

2,
we usually have 2 possiblevaluesof its projection: mI = � 1

2 . However, when
l = 0 and m = � 1

2, only mI = � 1
2 is possiblesinceml = 0.

In order to save memory space,only the non-zero(sub)diagonalsshould
be stored. We chooseto store cH0 in a two-dimensionarray. The rows of this
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Figure B.1: Generalblock-diagonalstructure of cH0 obtained with the order-
ing (B.2) of the wave-function components. It is illustrated in the particular
caseof I = 1
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Figure B.2: Small-block structure of one of the diagonal blocks of cH0. The
full small-blocks are represented by a letter f while the diagonal onesare
represented by d. It is illustrated here in the particular caseof Nd = 2.



142 APPENDIX B. STORAGE OF THE WAVE FUNCTION

array correspond to those of cH0. Its columns comprisethe (sub)diagonals
of cH0. For simplicity, the number of columns is set equal to the maximum
bandwidth of the (l ; m) blocks, which is 2Nd(2I + 1) + 1. This meansthat
uselesszerosarestored. However, sinceI is usually small, this lossof memory
spaceis not too important. For I = 1

2, which correspondsto all the practical
caseswe have treated up to now, lessthan half the matrix elements are nil.

As seenin Sec.4.3.4, the substepsof the evolution algorithm involving
the Hamiltonian H0 require the use of matrices, or LU decompositions of
matrices, which exhibit the sameband structure as cH0. Thesematrices, or
their LU decompositions, are thus stored using the samekind of array.

As already mentioned, in the Lagrange basis, things are much easier.
In this basis, the components of the wave function (4.31) depend on two
numbers: the Lagrange-meshindex i and the spin projection mI . As in the
previous case,the radial dependenceis represented by the index j r . This
meansthat the value of the wave function expressedin the Lagrangebasisis
fully determinedby the triplet (i; mI ; j r ).

We have seenin Secs.4.1 and 4.2, that, in this basis,the representation
of the time-dependent potential V is a fully diagonalmatrix (4.41):

bV
m I m0

I
ij r ;i 0j 0

r
(t) � V(
 i ; r j r ; t)� ii 0� j r j 0

r
� m I m0

I
: (B.3)

The Lagrange-meshindex i , the spin projection mI and the radial-meshindex
j r can thereforebe ordered in any sequenceto obtain the index of the one-
dimensionarray in which the wave function components arestored. We have
chosento usethe following one:

(j r ; mI ; i ): (B.4)

In other words, at each radial point, we considerevery projection of the spin
mI , and for each value of mI , we considerall the angular components.
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Analytical expression of
�nite-di�erence form ulae

In Chapter 4, we have seenthat the radial representation of the Hamiltonian
H0 leads to the discretisation of a di�eren tial operator by �nite-di�erence
technique (seeSec.4.2.1). In order to develop an algorithm as generalas
possible, we have calculated an analytic expressionof the coe�cien ts ap-
pearing in the formulae. In this appendix, we derive the formulae used in
Sec.4.2.1.

These formulae are establishedto approximate the nth derivative of a
function f at a point x0 of a uniform mesh. The approximation consistsof
a linear combination of the value of f at 2Nd + 1 points of the mesh. These
points are presumedto be adjacent to x0 and symmetrically placedaround
it. The approximation then reads

 
dn f
dxn

!

x0

� h� n
NdX

k= � N d

c(n)
k f (x0 + k h) (C.1)

where h is the step of the uniform grid. Sincewe are looking for a 2Nd
th -

order method, the coe�cien ts c(n)
k are obtained by requiring the formulae to

be exact for any 2Nd
th -order polynomial.

For we are only concernedby �rst- and second-orderderivatives,we re-
strained ourselvesto the corresponding formulae (i.e. n � 2). Nevertheless,
the following technique may be extendedto higher order.

Let P be a polynomial of order 2Nd:

P(x) =
2N dX

i =0

ai x i ; (C.2)

and P0 its �rst derivative:

P0(x) =
2N dX

i =1

ia i x i � 1: (C.3)

Wearelooking for coe�cien ts c(1)
k sothat approximation (C.1) with n = 1

is exactly equalto (C.3) for any setof f ai gi =0 ;:::;2N d . Therefore,x0 canbecho-
senequal to 0 without restraining generality. We thus considerthe following
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set of 2Nd + 1 points

xk = k h k = � Nd; : : : ; Nd: (C.4)

This gives

N dX

k= � N d

c(1)
k

2N dX

i =0

ai (k h) i =
2N dX

i =0

ai hi
N dX

k= � N d

ki c(1)
k

= P0(0)

= a1

(C.5)

Sincethis equality must be exact for any set of f ai gi =0 ;:::;2N d , the coe�cien ts
c(1)

k must then satisfy the following set of linear equation

NdX

k= � N d

ki c(1)
k =

1
h

� i 1 i = 0; : : : ; 2Nd: (C.6)

The matrix of this set of equations is nothing but a Vandermondematrix
associated to the set of 2Nd + 1 points xk=h (seeRef. [PFTV86, Sec.2.8]).

We know that the inverseof such a matrix is composedof the coe�cien ts
of the 2Nd + 1 Lagrange interpolating-polynomials over the xk [PFTV86,
Sec.2.8]. Moreover, from equationset (C.6), we seethat only the coe�cien ts
of the �rst-order term of thesepolynomials must be known to calculate the
coe�cien ts c(1)

k . This can be performedeasily, and we �nd that

c(1)
0 = 0; (C.7)

and

c(1)
k = (� 1)k� 1 (Nd!)2

k(Nd � k)!(Nd + k)!
(C.8)

which corresponds to (4.44).
The sameschemecan be followed to obtain an analytical expressionfor

the coe�cien ts c(2)
k . We then have to solve the following set of equations

NdX

k= � N d

ki c(2)
k =

2
h2

� i 2 i = 0; : : : ; 2Nd: (C.9)

The matrix of this equation set is the sameas that in (C.6), but the right-
hand sidehaschanged. In this case,the coe�cien ts of the second-orderterms
of the Lagrangeinterpolating-polynomials the must be calculated. This can
be donerather easily, and we �nally obtain

c(2)
0 = � 2

NdX

j =1

j � 2; (C.10)

and

c(2)
k = 2c(1)

k =k: (C.11)



App endix D

Prop erties of dH0

This appendix examinessometechnical aspects of the representation of the
Hamiltonian H0. In the �rst section,wedetail and test the di�eren t solutions
proposedto approximate the di�eren tial operator at the bordersof the mesh.
In the secondsection,we analysethe hermiticit y of the discretisation of the
projectile Hamiltonian. The third sectionexaminesthe unitarit y of the H 0-
dependent factors of the approximation of the evolution operator.

D.1 Boundary appro ximations

When usinga �nite-di�erence techniquefor discretisingdi�eren tial operators,
we are facedwith a di�cult y at the bordersof the mesh. Indeed,symmetric
formulae (4.43) and (4.45) cannot be usedat initial and �nal points of the
mesh for they would require values of the function outside the considered
interval.

A �rst attempt to solve this problem could be to use non-symmetric
formulae [AS70, Chapter 25]. This would slightly decreasethe accuracyof
the approximation. Moreover, the simpleband structure of the matrix would
be lost. This solution would thus complicate the algorithm implementation.

In order to introduceother solutions, let us have a look at the behaviour
of the wave function at both endsof the mesh. Becausethe wave function is
squareintegrable, it vanishesfor r ! 1 . In our grid calculation with �nite
radial interval, this is approximated by

�	 m I
� (r; t) = 0 8t; 8r � r N r : (D.1)

This meansthat the wave function is supposedto be negligibleat the end of
the meshat any time. This will be the caseif r N r is chosensu�cien tly high.
Therefore,symmetric �nite-di�erence formulae can be usedby assumingthe
wave function to be nil beyond the last point of the mesh.

At the origin, the situation is not as simple. From expansion (4.27),
we know that the wave-function components in the spherical-harmonicbasis
must vanish at r = 0:

�	 m I
� (r = 0; t) = 0 8t: (D.2)
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With the aim of avoiding non-symmetric �nite-di�erence formulae near the
origin, we have tried three approximations. The �rst one consistsin using
(2Nd + 1)-point symmetric-formulae (4.43) and (4.45) while consideringthe
wavefunction to benil outsideof the mesh.Wewill referto it asthe truncated
approximation.

In the secondapproximation, we assumethe wave function to be odd in
the vicinit y of the origin. It can thereforebe extendedfor negative r values
so that symmetric �nite-di�erence formulae can be used. This constitutes
the odd approximation.

The third approximation we have considereddoesnot make any assump-
tion upon the behaviour of the wave function at the origin. We merely use
formulae with di�eren t Nds at the �rst points of the mesh. Becauseof con-
dition (D.2), the derivative (4.42) at the point r 1 = r (h) of the meshcan be
approximated by 3-point formulae (Nd = 1) without any assumptionabout
the wave-function behaviour. At the point r 2 = r (2h), the di�eren tial op-
erator can be approximated by 5-point formulae (Nd = 2). Following this
idea, we can use the appropriate formulae at the �rst points of the mesh,
increasingNd until we reach the chosenvalue. This method will be referred
to as the progressiveapproximation. Its major drawback is that the error
due to discretisation is not consistent throughout the mesh. Lessaccurate
formulae are indeed used near the origin. However, the number of points
wherethis occurs is limited to two or three.

In order to test and comparethose three approximations, we have cal-
culated the physical bound statesof 11Be with each of them. Being located
mainly near the origin, thosestatesshould indeedbe more sensitive to these
approximations than the breakup components. The bound states are ob-
tained by calculating the eigenvectorsof cH0. In order to obtain a reference
calculation, we have computedthe bound statesusing a Numerov algorithm
[Ray72, Sec.2]. The potential modeling the core-fragment interaction in 11Be
and the bound spectrum of this nucleusare detailed in Sec.5.1.1.

The quasiuniform grid used for this test is the sameas that we use for
the evolution calculations. It is obtained with the g2 distribution described
in Sec.4.2.3with a = 5 and x0 = 0:6. The meshextendstill r N r = 800 fm,
and the number of points is set equal to N r = 1000. The number of points
in the �nite-di�erence formulae is chosenequal to 7 (i.e. Nd = 3), unless
for the �rst mesh points in the progressiveapproximation. The Numerov
calculation used for comparisonhas been performed on the radial interval
[0,100 fm] with a constant step of � r = 10� 3 fm. This method ensuresa
relative accuracyof 10� 7.

Table D.1 contains the calculation results. Its �rst row comprisesthe
values of the bound-state energiesobtained with the Numerov algorithm.
For each approximation, we display the calculated energyand the error on
the wave function for each bound state. The latter correspondsto the norm
of the di�erence betweenthe wave function obtained with the quasiuniform
grid and the referenceonecomputedwith the Numerov algorithm:

Error = jj � approx
nl j � � Numerov

nl j jj : (D.3)
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1s1=2 0p1=2
Approximation Energy (MeV) Error Energy (MeV) Error
Numerov -0.50128500 - -0.18446054 -
truncated -0.49890904 1.3 10� 3 -0.18446054 4.1 10� 8

odd -0.50130598 1.1 10� 5 -0.18446055 4.7 10� 8

progressive -0.50128500 4.8 10� 9 -0.18446054 4.0 10� 8

Uniform grid -0.53636139 1.9 10� 2 - -

Table D.1: Analysis of the di�eren t approximations at the origin. Calcula-
tions are performedwith a quasiuniformmeshextendingup to r N r = 800fm
using Nr = 1000radial points (Nd = 3). The �rst row contains the reference
valuesobtained with the Numerov algorithm. The last row displays the re-
sults obtained with a uniform grid using the odd approximation (N r = 1000,
rN r = 800 fm and Nd = 3).

In this expression,both functions are normalisedto unity.
We seethat the results are usually better for the 0p1

2 excited state than
for the 1s1

2 ground state. Moreover, the accuracieson the former aremoreor
lessthe samefor all approximations whereasthey di�er widely from onecase
to another for the ground state. This is due to the fact that a partial wave
with orbital momentum l varies as r l+1 near the origin [GP90, Chapter 6].
The p state calculation is thereforelesssensitive to the approximation at the
origin than that of the s state.

The accuracyof the approximations can thus be studied by analysingthe
error on the ground state. Of all the approximations the truncated oneseems
to be the worst. It indeedexhibits relative errorson both the energyand the
wave function of the order of 10� 3. Then comesthe odd approximation with
a relative error on the bound state around 10� 5. This improvement with
regard to the previouscasemight be due to the fact that the wave function
behaves,near the origin, as r , which is an odd function.

The best approximation is the progressiveone. It exhibits errors of the
order of 10� 9 � 10� 8 which are signi�cantly better than in any other case.
Moreover it also gives one of the lowest errors on the excited state. This
meansthat the errorsintroducedby the lower-orderformulaeusedat the �rst
mesh-points are negligiblein comparisonwith thosedue to approximation of
the wave-function behaviour near r = 0.

With the aim of illustrating the usefulnessof the quasiuniform grid, we
haveperformedthe samecalculationwith a uniform grid. Wehavechosenthe
sameextensionof the mesh(r N r = 800fm), and the odd approximation near
the origin. We have kept the sameparametersof the radial discretisation
as those used for the quasiuniform meshes:N r = 1000 and Nd = 3. The
results are summarisedin the last row of Table D.1. We can seethat using
a uniform grid leadsto very poor results. The ground state energyis known
with only one-digit accuracy. The error (D.3) on the corresponding wave
function is of the order of 10� 2, which is relatively large when compared
with the 10� 9 error obtainedwith the quasiuniformmeshand the progressive
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approximation. The excited state, as for it, could not be reproduced with
the uniform mesh. In fact we should have usedN r = 10000points to reach
a similar accuracyas in the caseof the quasiuniform grids. In other words,
with a uniform grid, we need ten times the number of radial points of a
quasiuniform grid to obtain the sameresults. This meansapproximately a
ten times longer evolution calculation, which is of coursenot a�ordable in
practical cases.

The precedingremarksjustify then the useof a quasiuniformgrid with the
progressiveapproximation which hasbeenchosenfor practical calculations.

D.2 Hermiticit y of the Hamiltonian appro xi-
mation

We have seenin Sec.4.2.2, that the use of a non-uniform grid leads to an
asymmetric representation of the di�eren tial operator (4.48). This means
that cH0 is not symmetric although H0 is hermitian. However this non-
hermiticit y of cH0 decreaseswhen a higher number of points is chosen. This
meansthat the Hamiltonian representation is approximately hermitian.

In order to \measure" the non-hermiticity of our approximation, we
comparethe approximations of matrix elements h 1jH0j 2i and h 2jH0j 1i .
They should be conjugate-complex,for H0 is hermitian.

As already mentioned, the asymmetry of cH0 is due to the discretisation
of the di�eren tial operator. In order to emphasizethis, we only considerthe
kinetic term of H0 with s wave-functions 1 and  2. They are normalisedto
unity and their radial parts are chosenequal to

u1(r ) = Cre� r
10 (D.4)

for  1 and

u2(r ) = Dre� ( r
10 � 1)2

(D.5)

for  2. In theseexpressions,C and D are normalization constants. These
functions are chosen for their general and simple forms. Moreover, they
satisfy the boundary conditions of the problem (D.1) and (D.2). In order to
ensurethat the functions do not decreasetoo rapidly, r is divided by 10 in
both expressions.

The matrix elements of H0 are calculated under those assumptionsfor
three valuesof N r (10, 100 and 1000) and the three boundary approxima-
tions consideredabove. The quasiuniform grid is chosenequal to that used
in the previous section. Table D.2 displays the hermiticity error. It corre-
spondsto the relative di�erence betweenthe matrix elements h 1jH0j 2i and
h 2jH0j 1i .

Another advantage of the simple expressions(D.4) and (D.5) is that the
matrix elements can be calculated analytically. Table D.3 contains the dis-
cretisation error. This error corresponds to the maximal relative di�erence
betweenthe approximated matrix elements and the exact value.
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Approximation N r = 10 Nr = 100 Nr = 1000
truncated 1.7 10� 2 5.7 10� 8 2.2 10� 13

odd 2.0 10� 2 2.4 10� 7 1.4 10� 10

progressive 0.11 1.0 10� 5 1.0 10� 7

Uniform grid 1.9 10� 16 4.5 10� 16 1.1 10� 14

Table D.2: Hermiticit y error: relative di�erence between matrix elements
h 1jH0j 2i and h 2jH0j 1i .

Approximation N r = 10 Nr = 100 Nr = 1000
truncated 0.20 4.4 10� 4 4.4 10� 5

odd 0.21 3.6 10� 5 3.4 10� 7

progressive 0.30 6.9 10� 6 7.1 10� 8

Uniform grid 1.8 0.14 1.1 10� 4

Table D.3: Discretisation error: maximal relative di�erence betweenmatrix
elements h 1jH0j 2i and h 2jH0j 1i , and the exact value.

We seefrom Table D.2 that the asymmetry of cH0 indeeddependsupon
the number of points of the radial mesh. We seealso that the choice of
the approximation at the origin deeply in
uences this non-hermiticity error.
Regarding this hermiticit y criteria of quality, the truncated approximation
seemsto be the best. The non-hermiticity observed for the odd approxima-
tion lies slightly below. In this case,the progressiveapproximation seemsto
provide the worst results. This is due to the fact that di�eren t formulae are
usedat the �rst points of the mesh. This indeedworsenthe asymmetry of
the matrix.

When the computedmatrix elements of H0 are comparedwith the exact
value, the situation is the sameasthat observed in the analysisof the bound
states (seeSec.D.1). The progressiveapproximation seemsindeed to give
the best estimation of the matrix elements while the truncated approxima-
tion leadsto the lessaccurateresults. This meansthat cH0 is moresymmetric
when the truncated approximation is used but that the corresponding dis-
cretisation of the di�eren tial operator is rather poor. It is therefore more
interesting to usethe progressivewhich is lesssymmetric but has the lowest
discretisation error.

For comparison,we have performedthe sametest with the uniform mesh
used in the previous section. It extends up to r N r = 800 fm and the odd
approximation is usednearthe origin. In this case,cH0 is perfectly symmetric
(seeEq. (4.49) with g(x) = x). Therefore the matrix elements h 1jH0j 2i
and h 2jH0j 1i are equal but for the roundo� errors. As expected, these
errors are increasingwith the number of points. The accuracyof this mesh
is however rather poor as can be seenfrom the high discretisation error
obtained with this mesh(seeTable D.3). Here again, the number of points
has to be increasedup to N r = 10000to obtain an error of the sameorder
of magnitude as that of the quasiuniform grids.

This study shows that the useof quasiuniformmeshesleadsto an approx-
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Approximation N r = 10 Nr = 100 Nr = 1000
truncated 1.1 10� 3 5.7 10� 9 6.7 10� 15

odd 1.1 10� 3 6.0 10� 9 3.6 10� 14

progressive 4.3 10� 3 2.5 10� 9 6.7 10� 13

Uniform grid 4.4 10� 16 2.2 10� 16 6.7 10� 16

Table D.4: Relative error on the norm of the wave function after one time
step of 1 �h/MeV. The calculationsare performedfor N r = 10, 100,and 1000
radial points. The quasiuniformgrid correspondsto the g2 distribution (4.52)
with rN r = 800 fm, a = 5 and x0 = 0:6. The last row of the table displays
the results obtained with a uniform grid that extendsup to r N r = 800 fm.

imately hermitian representation of H0. This meansthat the matrix cH0 is
not symmetricbut that the hermiticit y error canbereducedby increasingthe
number of meshpoints. It alsocon�rms that the progressiveapproximation
leadsto the fairest description of the Hamiltonian H 0.

D.3 Unitarit y of the appro ximation

It has beenmentioned in Sec.4.3.5 that our second-orderapproximation of
the evolution operator is approximately unitary. That is to say that the
norm conservation of the wave function is directly linked to the accuracyof
the radial discretisation.

In order to illustrate this approximate unitarit y, we have performed the
following test. We make a given wave function evolve and calculate the rel-
ative error on its norm after one time-step. Sincethe non-unitarit y is due
to the asymmetry of the discretisationof the di�eren tial operator (4.48), the
Hamiltonian H0 is solelycomposedof its kinetic term and the wave function
is supposedto be an s wave. For the samereason,the time-dependent per-
turbation V is not considered.Therefore, it corresponds to the propagation
of a free s wave.

The initial wave function is chosenequal to the wave function  1 (D.4).
The time step is setequalto � t = 1 �h/MeV. The wave function is discretised
over the samequasiuniformradial grid asin the precedingsections.TableD.4
givesthe relative error on the norm of the wave function after onetime-step.

As in the caseof the approximate hermiticit y of cH0, the norm conserva-
tion improves when the number of radial points is increased. The ranking
of the approximations at the origin is the same as that obtained for the
non-hermiticity. The most unitary evolution operator is obtained with the
truncated approximation while the lessunitary operator is derived from the
progressiveapproximation. This is due to the fact that the unitarit y of the
evolution operator is directly linked to the hermiticit y of cH0. However, we
seethat the di�erences betweenthe approximations are not very signi�cant.
Thereforethis test cannot be usedto selectthe approximation at the origin.

This test has also beenperformed with a uniform grid (last row of Ta-
ble D.4). The errors on the norm remain approximately constant with the
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number of points, and their magnitude is of the order of the computer accu-
racy. This is logical sincea uniform grid leadsto a symmetric approximation
of H0 (seeSec.D.2), and that the Pad�e approximation (4.79) is exactly uni-
tary when symmetric matrices cH0 are considered.

Theseresults con�rm that our approximation of the evolution operator
is approximately unitary and that the norm of the wave function is well
preserved if the radial grid contains enoughpoints. The accuratedescription
of the unperturbed Hamiltonian H0 therefore ensuresa negligible error on
the norm of the wave function.
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App endix E

Fourth-order evolution
algorithm

In this appendix, we describe a fourth-order approximation of the evolution
operator. It wasdevelopedto increasethe convergenceof our algorithm in or-
der to reducethe computational time. It hasbeentested in one-dimensional
problems[BGC03], and hasproven to give accurateresults. However, it has
not yet beenimplemented in this three-dimensionalalgorithm.

E.1 Fourth-order appro ximation

This algorithm hasbeenobtainedfrom the Magnusexpansionof the evolution
operator (4.58) up to order four:

U(t + � t; t) = exp

"

�
i
�h

Z t+� t

t
H (t0)dt0

�
1

2�h2

Z t

t0

Z t0

t0

[H (t0); H (t00)] dt00dt0+ O(� t5)

#

: (E.1)

Taking (4.1) into account leadsto

U(t + � t; t) = exp

(

� i
� t
�h

[H0 + W1(t)] �
� t3

�h2 [H0; W2(t)] + O(� t5)

)

(E.2)

where

W1(t) =
1

� t

Z t+� t

t
V(t0)dt0 (E.3)

and

W2(t) =
1

2� t3

Z t+� t

t

Z t0

t
[V (t00) � V(t0)] dt00dt0

=
1

� t3

Z t+� t

t
(t +

� t
2

� t0)V(t0)dt0: (E.4)

Theseexpressionshavebeenchosensothat both W1 and W2 have�nite limits
when � t ! 0.
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Using the BCH corollary (4.66), (E.2) can be factorisedas follows:

U(t + � t; t) = exp

"

i
� t2

�h
W2(t)

#
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� i
� t
�h
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�
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� i
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W2(t)

#

: (E.5)

Using the corollary (4.65) of the BCH formula onecanexpandthe central
term of (E.5) as

exp
�
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�
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�
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(E.6)

where

fW1(t) = W1(t) �
� t2

48�h2 [W1(t); [H0; W1(t)]]: (E.7)

Using the expressionof H0 (3.4), this can be evaluated analytically:

fW1(t) = W1(t) +
� t2

96�
[W1(t); [� ; W1(t)]]

= W1(t) �
� t2

48�
jr W1(t)j2: (E.8)

Sincethe expressionof the time-dependent potential V is known analytically,
the computation of its gradient can be performed without any di�cult y.
The introduction of this factor in the evolution operator is therefore quite
straightforward.

Using (E.5) and (E.6), and grouping the exponentials of W2 with that of
W1 leadsto the following factorisation of the evolution operator

U(t + � t; t) = exp
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+ O(� t5): (E.9)

Becauseof the higher order of this algorithm, the integrals over time
appearing in W1 (E.3) and W2 (E.4) have to be approximated with a higher
precisionformula than the midpoint one. The Simpson'srule [AS70,Chapter
25] gives:

W1(t) =
1
6

�

V(t) + 4V(t +
� t
2

) + V(t + � t)
�

+ O(� t4) (E.10)
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and

W2(t) =
1

12� t
[V(t) � V(t + � t)] + O(� t2): (E.11)

From (E.2) it can be seenthat this is su�cien t to preserve the fourth-order
accuracyof the method.

E.2 Evolution algorithm

The evolution algorithm canthereforebe obtainedby introducing (E.10) and
(E.11) in (E.9). It should be noted that, as in the second-orderalgorithm
(4.70), the last exponential of the evolution operator (E.9) at one step can
be grouped with the �rst oneof the next step. After N t time steps,the wave
function reads
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where t j = t0 + j � t. In this expression,W1(t) and W2(t) are evaluated
following (E.10) and (E.11) respectively.

The error at each step of this algorithm is of the order of � t5. The
number of time stepsN t being proportional to � t � 1, leadsto a global error
in O(� t4).

In this algorithm, the time step has beensplit in four substeps.At each
substepthe corresponding factor of the evolution operator is propagated.As
in the second-orderapproximation, a changeof angular basisis performedat
each substepsoasto expressthe exponential operators in their easiestform.

E.3 Appro ximation of exp onential operators

When expressedin the Lagrangeangular-basis(seeSec.4.1.3)and discretised
upon the quasiuniform grid (seeSec.4.2.1), the time-dependent potential V
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is represented by a fully diagonalmatrix. The exponentials of the operators
depending on V are thereforeeasily calculated,as explainedin Sec.4.3.4.

BecausecH0 is a band matrix, the exponentials of H0 are approximated
with Pad�e developments (4.75) (see Sec. 4.3.4). In order to preserve the
fourth-order accuracyof the scheme,we use the (2; 2) Pad�e expression. It
reads

R22(A) =
�

1 �
1
2

A +
1
12

A2
� � 1 �

1 +
1
2

A +
1
12

A2
�

: (E.13)

This expressionincludes the squareof the matrix to be exponentiated. As
canbeeasilyshown, the squareof a band matrix hasa band structure aswell.
It merely exhibits a larger bandwidth. Therefore,the techniquesdetailed in
Sec.4.3.4 so as to compute the exponentials of cH0 can be extendedto this
fourth-order algorithm.

Implementing this new approximation of the evolution operator is thus
quite easythanks to the useof two angular bases.Apart from the useof a
(2; 2) Pad�e development, it doesnot require any signi�cant modi�cation to
the second-orderalgorithm.



App endix F

Evaluation of the time in terv al

In this appendix, we analysethe e�ect of the truncation of the time interval
on the breakupprobability dPbu=dE (3.38). Wemainly considerlargeimpact
parameterswhere the convergenceof the scheme with regard to the time
interval seemsto be slower. This study will enable us to derive a rough
estimateof the truncation error. It can be usedto evaluate the time interval
which has to be usedin an evolution calculation.

Let us have a look back at the �rst-order perturbation theory Sec.3.4.3.
In that theory, the breakupprobability canbecalculatedwith (3.67). In that
expression,the time dependencereducesto the calculation of integrals over
time (3.66). If we approximate the classicaltra jectory by a straight line, and
take only the E1 transition into account, theseintegrals can be worked out
rather easily (seeAppendix A).

In order to have an insight on what happensin the time-evolution calcu-
lation whenthe time interval is truncated, let us perform the integrals(3.66)
with � = 1 over a �nite interval [t in ; tout ]. Becauseof the time symmetry
of the �rst-order perturbation calculation, we considersymmetric intervals
� t in = tout = T. Using (A.4), the integral over time for � = 1 and q = 0
then reads:

I 0
1 (! ; T) =

Z T

� T
ei! t vt

(b2 + v2t2)3=2
dt (F.1)

wherev is the relativevelocity, bis the impact parameter,and ! = (E � E0)=�h
(where E is the relative energyof both fragments after dissociation, and E0

is the energyof the initial bound state). In order to comparethis truncated
integral with the full one, let us rewrite it as

I 0
1 (! ; T) =

Z 1

�1
ei! t vt

(b2 + v2t2)3=2
dt � 2i

Z 1

T
sin(! t)

vt
(b2 + v2t2)3=2

dt: (F.2)

Using the modi�ed Besselfunction properties [AS70, relation 9.6.25], and
calculating the secondterm by partial integration, we obtain

I 0
1 (! ; T) = 2i

!
v2

"

K 0(x) +
v3

! 2

T
(b2 + v2T2)3=2

cos(! T)

+
v3

! 2

Z 1

T
cos(! t)

b2 � 2v2t2

(b2 + v2t2)5=2
dt

#

(F.3)
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whereK 0 is a modi�ed Besselfunction and x = ! b=v.
The breakup probability (3.38) is calculatedfrom the squareof the mod-

ules of the time integral. The contribution of the truncated time-interval
(F.1) is therefore

jI 0
1 (! ; T)j2 = 4

! 2

v4

(

[K 0(x)]2 + 2K 0(x)
v3

! 2

T
(b2 + v2T2)3=2

cos(! T) + O(
1

T4
)

)

:

(F.4)

The �rst term of this expressionis nothing but the contribution of the
time integral evaluated over [�1 ; 1 ]. The next onecorrespondsto the �rst
error term due to the integration over a �nite time-interval. It consistsof an
oscillating function whoseamplitude vanishesfor T ! 1 as T � 2.

The samekind of expressioncan be derived for q = � 1. In this case,the
time integral (3.66) performedover a symmetric �nite interval reads

I � 1
1 (! ; T) =

Z T

� T
ei! t b

(b2 + v2t2)3=2
dt: (F.5)

Following the sameschemeas for q = 0, we get

I � 1
1 (! ; T) = 2

!
v2

"

K 1(x) �
bv2

! 2

1
(b2 + v2T2)3=2

sin(! T)

+
bv2

! 2

Z 1

T
cos(! t)

3v2t
(b2 + v2t2)5=2

dt

#

(F.6)

whereK 1 is a modi�ed Besselfunction and x = ! b=v.
The contribution of integral (F.5) to the breakup probability is therefore

jI � 1
1 (! ; T)j2 = 4

! 2

v4

(

[K 1(x)]2 � 2K 1(x)
bv2

! 2

1
(b2 + v2T2)3=2

sin(! T) + O(
1

T5
)

)

:

(F.7)

Herealso,the contribution to the breakupprobability of the truncated in-
tegral contains the solution for the whole time-interval plus oscillating error-
terms. In this casethe greatestonedecreasesas T � 3 for T ! 1 .

If oneassumes,asit is the casehere1, that K 0(! b=v) and K 1(! b=v) areof
the sameorder of magnitude, the main error term shouldbe that of I 0

1 (! ; T).
Therefore, the relative amplitude AR of the oscillating error term is of the
order of the ratio of the secondterm of (F.4) to the value obtained for the
whole time interval:

AR � 2
v3

! 2

K 0(! b=v)
[K 0(! b=v)]2 + [K 1(! b=v)]2

T
(b2 + v2T2)3=2

: (F.8)

Taking into account that K 1(x) � K 0(x) and that T is usually large (T >
20 �hMeV� 1 � 4000fmc� 1), formula (F.8) can be approximated by

AR �
1

! 2K 0(! b=v)T2
: (F.9)

1In our study, ! � 1 MeV�h� 1, b � 10� 100fm, and v � 0:3c. This givesx � 0:17� 1:7,
and K 0(x) � 2 � 0:2 and K 1(x) � 7 � 0:2.
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T = 120 �h/MeV
T = 80 �h/MeV
T = 40 �h/MeV
T = 20 �h/MeV
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Figure F.1: In
uence of the time interval on the breakup probability. The
breakupprobabilities obtained from our evolution calculationswith di�eren t
time intervals (upper curves) are comparedto those computed at the �rst-
order approximation with the sametruncated time intervals (lower curves).
Valuesare scaledby the �rst-order perturbation breakup probability (3.67).

From the precedingremarks,we seethat the useof a �nite time interval
leadsto oscillating error-termsin the expressionof the breakupprobability in
�rst-order perturbation theory. The relativeamplitude of theseoscillationsis
approximately given by (F.9). This expressionshows that it can be reduced
by increasingthe time-interval width. It can thereforebe usedto obtain an
estimation of the time interval neededfor an evolution calculation.

In order to evaluate the relevance of this analysis, we have performed
time-evolution calculations with di�eren t time intervals. The calculations
have been worked out for a 11Be projectile with a lead target. The target
is assumedto follow a straight line in the projectile rest frame at a (large)
impact parameter b = 100 fm with an initial velocity v = 0:3c. The time
intervals have been chosensymmetric with T = � t in = tout = 20 �h/MeV,
40 �h/MeV, 80 �h/MeV, and 120�h/MeV. In Fig. F.1, the breakup probability
is represented as a function of the excitation energy. It hasbeendivided by
the probability obtained in �rst-order perturbation theory dPE 1

bu =dE (3.67)
so as to cancelits main energydependence.

For comparison,the breakupprobabilities obtained in the �rst-order per-
turbation theory with the same�nite time intervals are represented too. As
predicted form the above analysis, they are oscillating around dPE 1

bu =dE.
Their periods decreaseas T � 1 as obtained from formulae (F.4) and (F.7).
Moreover, formula (F.9) givesa good estimation of their amplitudes.

The breakup probabilities obtained from the evolution calculations do
alsoexhibit oscillations. They are similar to thoseobserved in the �rst-order
calculation. This indicates that formula (F.9) givesa fair estimation of the
importance of the error when the time interval is truncated.
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It shouldbe noted that regardlessof the oscillations,the curvesobtained
for the broadest time intervals seemto deviate slightly from the general
pattern of thosecalculatedwith the lowest valuesof T. This minor increase
is due to the fact that the projectile, being submitted longer to the in
uence
of the target, has a slightly larger probability of dissociating. However, this
deviation is rather small when comparedto the amplitude of the oscillations
at T = 20 �h/MeV. Its in
uence on the breakup probability can thereforebe
seenas negligible.

From expression(F.9), oneseesthat for a givenerror amplitude, the width
of the time interval is a function of the projectile-target relative velocity v, of
the excitation energythrough ! , and of the impact parameterb. In practice,
neither v nor ! do vary widely. The main variation of T is thereforedue to
b.

Since K 0 is a monotonousdecreasingfunction, we seethat the larger
the impact parameter, the larger the time interval. This may comefrom the
fact that at larger impact parameter,the projectile-target potential variation
is smaller than that at small impact parameter. Therefore, one needsto
integrate farther in time so as to have a negligible potential at initial and
�nal times in comparisonwith the maximum which is located at the time of
closestapproach t = 0.

This can be a problem becausethe computational time is directly pro-
portional to the time-interval width. Moreover, the wave packet propagates
rather rapidly after the time of closestapproach. A rise of the time interval
will thereforerequire a larger radial interval, and thus more radial points.

Neverthelessthe increaseof the integration interval with the impact pa-
rameter is not always necessary. If one calculatesthe total breakup cross
section (3.39) (i.e. integrated over all impact parameters), the oscillating
errors must be small in comparisonwith the total crosssection. Or, what
is more or lessequivalent, when comparing it with the highest valuesof the
breakup probability. Thesevalues are located at small impact parameters
(i.e. for b � 10� 20 fm). Thereforesuch a calculation canbe performedwith
the sametime interval for all tra jectories.

The expression(F.9) should therefore be used only when an accurate
computation has to be performedfor a particular tra jectory.
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