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Intro duction

The discovery of halo nuclei dates badk to the mid-eighties, when labora-
tories becameable to create and accelerateradioactive ion beams. This
technical breakthrough allowed the study of exotic nuclei through nuclear
reactions. It has beenfound that somevery neutron-rich nuclei exhibit an
astonishingly large matter radius in comparisonwith their closeneighbours
[Tan85a3 Tan85H. This characteristic is now understood as the sign of a
very peculiar structure. These nuclei are indeed seenas a core, compris-
ing most of the nucleons,to which one or two neutrons are loosely bound.
The strangenessof this structure is that the valenceneutrons have a very
high probability of presenceat a large distance from the core, far beyond
the nuclear-irteraction range. This meansthat they are tunnelling well out-
side the classicallyallowed region. Therefore they constitute a sort of halo
surrounding the core [HJ87]. The core, remaining almost unperturbed by
the presenceof the halo, can be seenas a usual nucleus. Up to now, only
one-and two-neutron halo nuclei have beenobsened. The best known are
11Be (with a one-neutronhalo), and ®He, *!Li and **Be (with two-neutron
halos). The existenceof proton haloshasbeensuggestedn someproton-rich
nuclei. Howewer, the presenceof the repulsive Coulomb interaction hinders
the formation of proton halos[Tan94q.

This new nuclear structure is therefore a stringert test for the current
nuclear models. This explains that, sincetheir discovery, halo nuclei have
been the subject of many experimertal studies (see Refs. [HJJ95, Tan96,
TKO3] for reviews). In theseexperimerts, information about this structure
is usually obtained by the disscciation of the halo from the core. Coulonb
breakupis of particular interest [Nak94. In this reaction, the halo neutrons
are dissaiated from the core through its Coulomb-dominated interaction
with a heavy target. The main advantage of this reaction lies in the fact
that the dominant Coulomb interaction reducesthe uncertairties assaiated
with the nuclearinteraction. In orderto correctly extract information about
the structure of thesenuclei from experimenrtal crosssections,an accurate
theoretical description of this medanism is necessary

In recer years,se\eral theoretical methods have beendeweloped to study
the Coulomb breakup of halo nuclei (seeRefs.[TS01a ANO3] for recert re-
views). Thesemethods include the coupledchannelswith a discretisedcon-
tinuum [Kam86], the adiabatic approximation [Tos98, and the semiclassical
appraximation [KYS94, EBB95]. In these techniques, the halo nuclei are
viewed astwo- or three-body systems(the coreplus the halo neutrons). Due
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2 INTRODUCTION

to the simplicity of the two-body model, the one-neutronhalo nuclei are an
excellen testing ground for the theoretical study of Coulomb breakup. This
explainswhy most methods focus on thesenuclei.

In this work, we usethe semiclassicabppraximation which leadsto the
resolution of a time-dependent Scredinger equation. In this method, the
relative motion betweenthe halo nucleusand the target is descrited by a
classicaltrajectory. The halo nucleusis therefore seenas ewlving in the
varying Coulomb and nuclear elds of the target. Seweral methods have
beenproposedto solwe this equation. Usually, the projectile wave function
is expandedinto partial waves,and the time-dependert potertial simulating
the projectile-target interaction is expandedinto multip oles[KYS94, EBB95,
TS01b]. This method allows a fair description of the halo nucleus. Howeer,
it requiresheavy analytical treatments of the projectile-target potertial, and
leadsto the needto solwe setsof coupledequations.

The aim of this work is to analyse, implemert and improve another
method of solvingthe time-dependert Sdredingerequation. In this method,
the projectile wave function is expandedupon a three-dimensionalspherical
mesh[MB99]. This enablesus to both retain a fair description of the halo
nucleus, and obtain simple and accurate treatment of the time-dependen
potertial. Accordingly, this method, which does not require the multip ole
expansionof the time-dependern potential, leadsto a simple time-ewolution
calculation.

This numerical method is then usedto study the Coulonb breakup of
three weakly bound nuclei. The rst one is the very well known !Be.
This nucleushas beenstudied by many authors both theoretically [KYS94,
RVB96, Des97 and experimertally [Fuk91, Nak94, Kel95. Howewer, some
uncertainty remains about the structure of its ground state. The Coulomb
breakup of this nucleushasrecerly beenremeasuredNak03. It is therefore
interesting to seewhether the comparisonof our model with thesenew data
may give us a better insight into the structure of this nucleus.

The method is alsoapplied to the Coulonmb breakup of the candidateone-
neutron halo nucleus®C. Recerily, this reactionhasbeenstudied experimen-
tally [Nak03. This enablesusto compareour model with the experimert in
this casetoo.

Finally, we study the disscciation of a candidate one-protonhalo nucleus:
8B. Besidesits possibleproton-halo structure, this reaction is of particular
interest in astrophysics. Indeedit can simulate the inversereaction of the
radiative capture of one proton by "Be, which takesplacein the sun[BR96].

Chapter 1 consistsof an introduction about the physics of halo nuclei.
After a description of the halo structure, the main experimerts usedfor its
study are briey reviewed. The proton-halo structure is also examined.

Chapter 2 contains the theoretical framework in which our method is
deweloped. This includesthe description of the semiclassicabppraximation,
and of the correspnding time-dependent Sdredinger equation. The main
techniquescurrently usedto solwe this equation are presened aswell. Some
other methods deweloped for studying the breakup of halo nuclei are also
reviewed.
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In Chapter 3, the main theoretical ingredierts usedin our method are
descriked. Theseinclude the two-body structure usedto model one-rucleon
halo nuclei, and the choice of the potentials which simulate the interaction
between the halo nucleus and the target. This chapter also cortains the
description and parametrisation of the classicaltrajectories usedto model
the projectile-target relative motion. Its last sectionlooks at the calculation
of the breakup crosssectionsand other obsenables computable from the
output of our calculations.

Chapter 4 comprisesa detailed description of the method we useto solve
the time-dependert Scredingerequation. This chapter is divided into three
sections.In the rst, the angulartreatment of the wave function is explained.
The secondsection examinesthe discretisation of the radial variable. The
actual algorithm usedto compute the time ewlution of the projectile wave
function is detailed in the third sectionof this chapter.

In Chapter 5, we presen our study of the breakup of 1'Be. The results of
our calculationsare comparedwith the experimertal data. This chapter also
contains the analysesof di erent aspects of the method. Theseinclude the
choiceof the potentials simulating the projectile-target interaction aswell as
the choice of the classicaltrajectory.

In Chapter 6, we turn to °C, and compareour results with the recertly
measuredbreakup crosssection.

In Chapter 7, we presen the results obtained for 8B, and comparethem
with experimertal data.

The conclusionsand prospects of this work are givenin the nal section.
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Chapter 1

Halo nuclei

1.1 The Halo structure

The dewlopmernt of radioactive nuclear beamsin the mid-eighties enabled
physiciststo study nucleifar from stability [Tan85a Tan85b]. This led to the
discovery of neutron halo nuclei. Theselight nuclei, located near the neutron
drip line, exhibit a high probability of presenceof one or two looselybound
neutrons at a large distance from the other nucleons. These neutrons can
be viewed as a halo surrounding a core composedof the remaining nucleons.
The core seemdo exhibit more or lessthe sameproperties (matter density,
electromagneticmomerts, etc.) asif it were free of the halo®.

The currently known halo nuclei display a halo with either one neutron
(like *'Be) or two neutrons (like ®He, 'Li and “Be). Table 1.1 cortains
the major halo characteristics of those nuclei. Firstly, they exhibit particu-
larly low one-neutron(S,) or two-neutron (S;,) separationenergiegAW95]
in comparisonwith the meanbinding energyof the stable nuclei, which lies
around 8 MeV per nucleon [Kra88, Chapter 3]. It should be noted that
whereas''Be exhibits the \usual" order S, < S,,, two-neutron halo nuclei
have S,, < S,. In fact, two-neutron halo nuclei are borromean nuclei. These
nuclei exhibit a three-cluster structure in which none of the binary subsys-
tems are bound. For example!!Li is bound though neither 1°Li nor dineuton
exist?.

Secondly the halo neutron root meansquare(r.™) of 1Be [Nak94 and
the root-mean-squaren-n separations(r;'*) of the two-neutron halo nuclei
[Mar0Q] are large when comparedwith the 2-3fm range of the nuclear in-
teraction. This meansthat the loosely bound halo neutrons spend most of
their time beyond the range of the interaction that binds them to the core.

Up to now, there is no generallyacceptedde nition of halo nuclei. How-
ever, in this introductory chapter, we follow Riisager, Fedoros, and Jensen
[RFJOQ], and make use of their de nition: \Quantum halos are de ned as
systemswith dominating few-body structure and radii large comparedto the

1The concept of halo nucleus was rst introduced by Hansenand Jonsonin [HJ87].

2The epithet borromean was introduced by Zhukov et al. [Zhu93] in allusion to the
Borromeo family blazon. It represertts three rings bound together in such a way that the
breakage of one of them leavesthe other two free.

5



6 CHAPTER 1. HALO NUCLEI

Nucleus Sn (MeV)  S;n (MeV)  r[2® orri™ (fm)
1Be 1Be+ n 0.504 7.317 6:4 07
He “He+ 2n 1.864 0.974 59 12
B °Li+ 2n 0.330 0.300 6:6 15
“Be '?Be+ 2n 1.850 1.340 54 1.0

Table 1.1: Neutron separationenergiesand neutron root mean squareradii
of the major halo nuclei. S, and S, are obtained from Ref. [AW95], the r|™®
of 1!1Be is taken from [Nak94, and the ri™s of the two-neutron halo nuclei
are taken from [Mar0Q]

sizesof the classicallyallowed regions”. This de nition emphasiseshe three
main halo characteristics.

(i) Halo nuclei exhibit a strong cluster structure. That is to say, they are
well descriked as a core plus one or two neutrons.

(i) Halo nucleihave a large matter radiusin comparisonwith the rangeof
the nuclear interaction. This is explainedin the few-body model by the fact
that the halo neutrons have a high probability of being at a large distance
from the core. In other words, their wave function is assumedto tunnel
far outside the classically allowed region. This region correspnds to the
positionsthe halo neutronswould occupy if their relative motionsto the core
were treated classically For example,in a two-body structure (i.e. for one-
neutron halos) thesepositions are thoseat which the interaction potential is
lower than the binding energyof the system. This secondcondition implies
the third one.

(i) Halo nuclei are weakly bound, i.e. the separationenergyof the halo
neutrons is very low. This two- or three-body structure can therefore be
easily broken.

With the aim of illustrating this de nition, let us considera one-neutron
halo represeted by a simple two-body structure: a pointlik e neutron weakly
bound to a pointlik e structurelesscore by a short-range potertial. In this
simple model, the radial wave function u, describingthe core-halorelative
motion in the bound state of separationenergy S, and orbital momertum |
is solution of [CDL73, Chapter V1]

d? (I + 1
ﬁu|(r)+ (rz )

u(r) + iZV(r)m(r) = 2u(r): (1.1)

In this equationqv is the attractiv e potertial modelling the core-neutron

interaction, = 2S,=h? and is the reducedmassof the system.
The solution of this equation exhibits the following asymptotic behaviour

U|(I’)r!l! Ce e (1.2)

This simple picture illustrates the fact that the halo neutron is tunnelling
beyond the rangeof the potertial andthat the probability of nding it outside
of the potential well is increasingasthe binding energyS,, decreases.



1.1. THE HALO STRUCTURE 7

Howewer, a low one- or two-neutron separation energy though a good
clue, is by no meansa su cien t condition for the display of a halo structure.
For example, we seethat when the orbital momertum | is increased,the
secondterm of the left hand sideof Eq. (1.1) becomeamore important. This
term, alsoknown asthe centrifugal barrier, hasthe e ect of pushingthe halo
neutron inside the nucleus. It therefore dampensits wave function outside
the range of the potential V. This is illustrated in Fig. 1.1.

In the upper part, the sum of the potertial V and the certrifugal barrier
I(I + 1)=r? (also known asthe e ective potential) is displayedfor s (I = 0), p
(I = 1), andd (I = 2) orbitals. The depth of V is adjustedin order to obtain
the sameneutron separationenergyfor all | (0.5 MeV). The wave functions
of the corresppnding bound states are shavn in the lower part of Fig. 1.1.
They all exhibit the sameasymptotic behaviour (1.2) but the magnitude C,
of their exponertial tails diminisheswith increasingl. This meansthat the
neutron hasa lower probability of presenceat a large distancefrom the core
for high |. It is usually acceptedthat one-neutronhalosappear mainly in s
and p orbitals [RFJO0, FIR93].

This illustrates the formation of one-neutronhalosin a simple two-body
model. The large radius of halo nuclei is understood as an important tun-
nelling of the halo neutron outside the classicallyallowed region. This tun-
nelling requiresa very low binding energyof the core-halosystem,as shavn
by (1.2). Newerthelessthis condition is not su cien t asillustrated in Fig. 1.1.
A more complete discussionabout halo nuclei formation as well as a clas-
si cation of halo states can be found in Refs.[FJR93] and [RFJOQ]. These
authors also apply the samekind of reasoningin the caseof two-neutron
halos.

This new exotic feature in nuclear physicsis of great interest not only
becauseit constitutes a stringert test for the available nuclear models but
also becauset opensup new researtr elds in nuclear science.Halo nuclei
are therefore the focus of numerous theoretical and experimental studies
[Nun03, TKO3].

In this rst chapter, we will try to give a rapid overview of the di erent
experimerts that are used as a probe into the halo structure. For more
information we refer the readerto the review articles [TKO3, Nun03, Tan96,
HJJ95|.
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Figure 1.1: (a) Prole of the e ective potentials (i.e. sum of the actual
potertial V and the certrifugal barrier) for s (solid line), p (dotted line), and
d (dashedline) orbitals. Their depths are adjusted so as to reproduce the
samebinding energy (0.5 MeV). (b) Corresponding radial wave functions.
They all display the same asymptotic behaviour (1.2) but higherd waves
exhibit a lower probability of presenceat a large distance.
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Figure 1.2: Interaction radii (R,) of He, Li, Be and B isotopesas a function
of the massnumber A. The dotted line shows the usual A dependenceof
the nuclear matter radius. Valuesare from Refs.[Tan85h Tan88].

1.2 Prob esinto the halo structure

1.2.1 Interaction cross section and radius

The rst value that has been measuredon exotic nuclei using secondary
radioactive beamsis the interaction crosssection( ;) [Tan853 Tan85b]. It
is de ned asthe total crosssectionfor all processesn which the projectile
number of nucleonsis changed.

From the interaction crosssections,one can de ne, using a simple geo-
metrical model, the interaction radius [Tan854:

(PiT) = (Ri(P)+ Ri(T)% (1.3)

where P is set for projectile and T for target. It has beenshown that the
interaction radius is more or lessindependert of the target [Tan853 Tan85b].
Measuringthe interaction crosssectionsfor di erent targets then allows the
interaction radius of a projectile to be obtained. Fig. 1.2 represets the
interaction radii of se\eral isotopesof He, Li, Be and B asa function of the
massnumber A [Tan85h Tan88].

In nuclear theory, it is well known that stable nucleusdensity is rather
constart up to a certain radius from which it dropsto zero [Kra88, Chap-
ter 3]. The certral densily is quite similar from the lightest nuclei to the
heaviest. This led to the semiclassicaliquid-drop model in which nuclei are
viewed as liquid droplets with a homogeneousiensity. In this model, a nu-
cleus cortaining A nucleonsis therefore seenas a spherewith a radius R
proportional to A¥S:

R=ro A (1.4)
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with ro "' 1:2 fm.

If oneassumeghat the interaction radiusis somehav a measureof the nu-
clearsize,it shouldfollow the A= law predicted from the liquid-drop model
(1.4). We can seefrom Fig. 1.2 that most of the nuclei have an interaction
radius that lies along the A= dotted curve. However somenuclei near the
neutron drip line (like °He, 8He, ''Li, 'Be or *Be) exhibit anomalouslyhigh
interaction radii in comparisonwith their neighbours. This seemdo indicate
that those nuclei have large nuclear radii dueto an extendedmatter density
and/or a major deformation [Tan85H.

1.2.2 Matter density

In order to explain this unexpected increaseof the nuclear radius of some
unstable nuclei near the neutron drip line, it might be of interestto measure
their nuclear density distribution. Becauseof their short life, a usual mea-
suremen of their density, e.g. usinghigh energyelectronor proton scattering,
is dicult. Fukuda et al. [Fuk91] proposedto make use of a semiclassical
optical limit of the Glauber model to infer the 'Be density from the inter-
action crosssection. In this model [Kar75], the interaction crosssectionfor
projectile P and target T canbe expressedisa function of the projectile and
target matter densities. This model had beenshown to give accurateresults
for light stable nuclei at high energyusing Gaussianmatter densities.

Fukuda et al. [Fuk91] have measuredthe interaction crosssectionsfor
11Be with C and Al targets at an energy of 33A MeV. Using the earlier
measuremets of Tanihataetal. [Tan8g at 790A MeV for the sameprojectile
and targets, they comparedthe experimertal s with the calculated ones
using di erent distributions.

Firstly, they tried to reproduce the interaction cross sectionsusing a
Gaussiandistribution. Secondly they performeda calculation with a Gaus-
sian plus a Yukawa tail distribution which hasan asymptotic behaviour sim-
ilar to (1.2).

They found that both energyand target dependencesould bereproduced
only when using the Yukawa tailed distribution. This result seemsto show
that the enhancemen of the nuclear radius of 'Be is due to an extended
density rather than to a signi cant deformation of the nucleus. This slowly
decreasingdensity tail is now understood asa halo structure. 'Be is seenas
made up of a °Be core surroundedby a looselybound neutron which forms
the halo. The core density is assumedto have an appraximately Gaussian
shape like stable light nuclei while the halo neutron is responsible for the
long tail of the matter distribution.

Other experimerts have beenperformed[Tan92 Oza01]in order to infer
the density of halo-nucleus candidatesfrom their interaction crosssections
with di erent targets. The way they deducedthe matter distribution from
their measuremets is not exactly the sameas that of Ref. [Fuk91]. They
made use of an improved Glauber-type model [OYS92, AT96] in which the
cluster structure of the halo nuclei is taken into accoun. Their measure-
merts enabledTanihata et al. to infer the presenceof a long tail in the Li
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distribution. Ozawa et al. con rmed the extendeddensity of 'Be deduced
by Fukuda et al. and found evidenceof a one-neutronhalo structure in some
neutron-rich nuclei suc as*°C.

Recerntly, experimerts of elastic proton scattering by radioactive nuclei
have beenperformed (seee.g. [Ege03). In those experimerts, a radioactive
ion beamis directed onto a hydrogentarget and the di erential crosssection
is measured. From this crosssection, the density of the projectile can be
inferred using a Glauber-type model. For example, Egelhof et al. [Ege03
were able to deducefrom their measuremets the matter density of He and
Li isotopes. Their results con rmed the extended matter distribution in
11i and %®He. Furthermore, their density parametrisation enabledthem to
extract the density of the core of thesenuclei. They comparedit with that
of the corresnding nucleus(°Li and “He respectively) and found that both
distributions were closeto eadt other.

This meansthat the presenceof the halo does not seemsigni cantly to
modify the core. Therefore, the latter might be seenas an unperturbed
nucleus.

1.2.3 Halo breakup

In the experimerts descrited in the previous paragraphs,information about
nuclei was obtained through the measuremen of interaction crosssections.
Thesecorrespnd to all the processeshat modify the nucleonnumber of the
studied nucleus. Among them, the halo breakup is of particular interest. In
this reaction, the halo disscaciatesfrom the corethrough nuclearand Coulomb
interactionswith the target. The study of halo breakup canthereforecorvey
information about the halo structure.

Furthermore, this reactionturns out to be very likely in collisionsinclud-
ing a halo nucleus. In Ref. [Kob88], Kobayashi et al. measuredfragmen-
production crosssectionsfor a two-neutron halo projectile *Li on a C target
at an energyof 790A MeV. They found a remarkably higher crosssectionfor
production of °Li than for any other fragmert of the projectile (seeTable1.2).
This reaction correspndsto two-neutron removal and its large crosssection
is qualitativ ely understood asa high probability of the removal of the loosely
bound halo neutrons.

Using a Glauber-type model in which the halo structure of 1Li wastaken
into accourt, Ogawa et al. have shown that the two-neutron removal cross
section( ,,) wasequalto the di erence betweenthe Li and °Li interaction
crosssectionwith target T [OYS92:

(ML T) = (ML T) Ol T) (1.5)

The one-or two-neutron removal crosssectionshave beenmeasuredfor one-
or two-neutron halo nuclei respectively. They have beencomparedwith the
interaction crosssection of the nucleusand that of the core, and relatively
good agreemenwith (1.5) hasbeenfound. For illustration, Table1.3displays
those valuesfor 'Be and Li nuclei with a C target at 790A MeV (values
are extracted from Refs.[Fuk91, Tan88 Kob88, Tan85b]).
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Fragmert Crosssection(mb)

SLi 213 21
8Li 62 9
Li 33 8
6L 7 3
8He 26 6
SHe 45 8
“He 47 10
3He 6 3

Table 1.2: Production cross section of the 'Li fragmerts measured by
Kobayashi et al. [Kob88] on a C target at 790A MeV.

Nucleus Core 1 (N) 1 (©) 1 (N) 1 (©) n(N) or 5,(N)
11Be 1'Be 942 8 813 10 129 18 169 4
I OLi 1047 40 796 6 251 46 213 21

Table 1.3: Interaction crosssectionof one-and two-neutron halo nuclei (N),

of their core (C), di erence betweenthem and one-or two-neutron removal

crosssection. Crosssectionshave beenmeasuredfor C target at an energy
of 790A MeV. Valuesare expressedn mb and are taken from Refs. [Fuk91,
Tan88 Kob88, Tan85b].

This illustrates the fact that the increaseof the interaction crosssection
for halo nuclei can be seenasresulting from the halo breakup process.

The measuremets mernioned above were performed using light targets.
In thosereactions,the Coulomb interaction is negligible. Experimens have
beenconductedin orderto study the importanceof the nuclearand Coulomb
interactionsin the halo breakup. Blank et al. have measuredthe ,, for 1Li
on both light and heary (high Z) targets [Bla93] (seeTable1.4). The nuclear
cortribution ( }) was calculated with the eikonal model of Bertsch et al.
[BES9Q. The Coulonb cortribution ( $,) to the disscciation was obtained
by subtracting Y from .

The proportion of the Coulomb cortribution to ,, increasesasexpected,
with the target proton number. Being negligiblefor light C target, it becomes

Target n N (calculated) §, (deduced)
C 1703 235 70
Sn  1090%% 584 51029
Pb  1970%% 698 127039

Table 1.4: Two-neutronremoval crosssectionsfor *!Li on di erent targets at
an energyof 80A MeV. The nuclear part ( 5.) of the crosssectionwas cal-
culated following [BES90],and the Coulomb cortribution ( ) wasdeduced
by subtracting 5. from ,,. Values,expressedn mb, are from Ref. [Bla93].
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the most frequert disscciation processfor heary Pb target. The Coulomb
halo breakupcanthereforebe another sourceof information about halo struc-
ture.

1.2.4 Momen tum distribution of the fragmen ts

Besidesthe con rmation of the halo structure obtained from the increaseof
the disscciation crosssection, breakup processcan also provide information
about the density distribution of the halo.

Let us consideran extendedlooselybound two-body system(e.g. a one-
neutron halo nucleus). Accordingto the Heiserberguncertainty principle (see
e.g. [CDL73, pp 27-29]),the large spatial expansionof the systemwill leadto
a narrow distribution in the momertum space. Therefore,a measuremen of
the momertum distribution of the constituernts would give usefulinformation
about the structure of the system. Alas, it is necessaryo breakthe systemto
obtain sud a measuremenand thus to modify it. Newertheless,it is usually
assumedHan96 Orr97] that the breakup fragmerts still carry information
about the structure of the nucleus prior to the disscaiation. This picture
can be generalisedfor two-neutron halo nuclei by consideringthree-cluster
systemswidely extended.

This idea has led to many experimens (seeRef. [Orr97] for a review)
in which physicists have measuredthe momerium distribution of either the
halo neutrons or the corefollowing the disscciation of halo nuclei. This dis-
tribution merely consistsof the breakup crosssectionmeasuredasa function
of the momertum of one of the fragmerts. One usually considersonly the
momertum componert either parallel or perpendicularto the incidernt beam.
Onethen speaksabout the parallel-momentumdistribution or the transverse-
momentumdistribution respectively. It hasbeenfound that the halo-nucleus
fragmerts indeed exhibit narrov momerium distributions [Kob88, Kel95|.
Therefore, an obsened narrow width in the fragmert momertum distribu-
tion can be consideredto be the sign of an extended wave function and
thereforean indication of a halo structure.

Table 1.5 displays the value of the full width at half maximum (FWHM)
of the parallel-momenum distributions of the coresafter the breakup of some
halo nuclei. Thesevalueswere measuredat medium energieswith light tar-
gets. For comparison,we alsogive the FWHM of the parallel-momerum dis-
tribution of the *3C fragmert following the *C breakup. The core-mometum
distribution is indeedmuch narrower for halo nuclei than for nuclei which do
not exhibit a halo structure.

This kind of measuremencanthus be usedasa tool for discovering new
halo nuclei. Recerly, sud an experimert has beenperformedwith the aim
of exploring the neutron drip line for halo-nucleus candidates[Sau0Q. In
this experimert, Sau\an et al. have measuredhe corefragmert longitudinal
momertum distribution for one-neutronremoval on a C target for B, C, N,
O, and F isotopes. They obtained narrow widths for *>C and “B. Small or
moderate enhancemets of their reaction crosssectionslead the authors to
suspect a smaller one-neutronhalo structure in thesenuclei.
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Nucleus Target Fragmert E (A MeV) FWHM (MeV/c) Ref.

11 C OLi 66 452 24 [Orr92]
SHe C “He 24 946 54 [Wan02
1Be Be 10Be 63 416 21 [Kel95]
Lle C 13C 71 180 5 [Sau00]

Table 1.5: Width (FWHM) of the parallel-momernum distributions of the
coresfollowing the breakup of well known halo nuclei on light targets. Value
measuredfor the non halo nucleus!*C is shown for comparison.

Nucleus ( n) Q (mb)

OLi 3.4391 2740 1.0
Hpj 3.6678 312 45

Table 1.6: Electromagnetic momerts of Li isotopes. Magnetic dipole mo-
merts ( ) are expressedn nuclear magneton( n = 3:15245 10 & eV/T)
and electric quadrupole momerts (Q) are expressedn mb. Valuesare sum-
marisedin Ref. [Tan9§.

1.2.5 Proton distribution

The previoussectionsshowved that a number of neutron-rich nuclei exhibit a
two- or three-clusterstructure, which is seenasa corecontaining most of the
nucleonssurrounded by one or two loosely bound neutrons. The question
that arisesfrom this viewpoint concernsthe structure of the core. Is it
behaving like a usual nucleusor doesit exhibit deformation?

We have seenin Sec.1.2.2that calculationsperformedin order to repro-
duce the energy and target dependencesof the interaction crosssection of
halo nuclei predicted a usual density for the core. We shall seein this para-
graphthat other measuremets cangive usan insight into the corestructure.

The halo structure implies that all the protons are con ned in the core.
Therefore,measuremets of properties sensitive to the proton density should
re ect the shape of the core.

In Refs. [Arn87, Arn92], Arnold et al. measuredthe magnetic dipole
( ) and the electric quadrupole (Q) momerns of Li. They comparedtheir
valueswith the electromagneticmomerts of other Li isotopes. Thesevalues
are displayed in Table 1.6 for °Li and *'Li. The small di erence betweenthe
Lj and the °Li momerts is in agreemeh with the presumed*Li structure.
The quadrupole momert is indeed dependert on the proton density alone,
the closenes®f Li and °Li valuestherefore con rms the presenceof a °Li
corein 1Li. The sameinformation is obtained from the values. It should
be noted that the 3:67 y value of the magnetic dipole momen of lLi is
closeto the Sdxmidt value of 3:79 . This value is obtained from a simple
shell model [Kra88, Chapter 5] in which the magnetic dipole is assumedto
be mostly due to the unpaired p3=2 proton.

Another measurementhat canbe carried out in order to study the core
structure is the charge-danging crosssection( z). If the presenceof the
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Figure 1.3: Comparisonbetweeninteraction crosssections( |, opensquares)
and charge-dhangingcrosssections(  z, full circles)for di erent Li isotopes.
Valuesare measuredat 80A MeV for a C target [Bla92).

halo leadsto a large deformation of the core,the  , which can be related
to the proton density through a Glauber-type model, should be modi ed.
Blank et al. [Bla92] have measuredthe charge-danging cross section for
Li isotopeson a C target at 80A MeV. The fact that ; doesnot vary
much with A, while the interaction crosssectionincreaseswith the neutron
number (seeFig. 1.3), indicatesthat the proton density doesnot presern any
signi cant changefrom oneisotope to another.

Recerly, anewexperiment hasbeencarried out by Chulkov etal. [ChuQQ].
They have measuredthe charge-tanging crosssectionfor B, C, N, O and
F isotopeson C target at an energy around 1000A MeV. They have con-
rmed the fact that nearthe neutron drip line is nearly constart. Using
a Glauber-type model, they inferred that the proton distribution does not
changemuch from oneisotope to another and thereforethat the chargera-
dius is not strongly modi ed by the additional neutrons. According to their
study, 1°C can be seenas a one-neutronhalo surrounding a *C core.

1.3 Proton halo

All the precedingsectionsconcernneutron halos. One might ask whether
proton halosare possible. The main di erence betweenneutronsand protons
liesin the electric chargeexhibited by the latter. When consideringa proton
weakly bound to a chargedcore,the long-rangerepulsive Coulomb potertial
is addedto the short-rangedattractiv e nuclearinteraction. This leadsto the
appearancefor protons of a Coulomb barrier. Its e ect is qualitativ ely the
sameasthat of the certrifugal barrier (seeSec.1.1). It pushesthe protons
inside the nucleus, diminishing their probability of tunnelling outside the



16 CHAPTER 1. HALO NUCLEI

Nucleus Sy (MeV) Sy, (MeV)

8B "Be+p 0.14 5.7
YE 180+p 0.60 12.7
'Ne 0O+ 2p 1.5 0.94

Table 1.7: Properties of proton-halo candidates. One-proton (Sy) and
two-proton (S,;) separation energy expressedin MeV are obtained from
Ref. [AW95].

nuclear-irteraction range. Therefore the formation of proton halos, albeit
not impossible,is much lessprobablethan that of neutron halos.

The major proton-halo candidatesare 8B, *'F, and ’Ne [Tan9g. Ta-
ble 1.7 displays the one-proton(S,) and two-proton (Sy,) separationenergies
for those nuclei. The very low S, of 8B and !’F suggestthat they exhibit a
one-proton halo structure. *’Ne exhibits a very low S,,, even lower than its
Sp. This might be the sign of a two-proton halo structure.

Howewer, asin the caseof neutron-halo nuclei, this property is not suf-
cient for deweloping a halo. Se\eral experimerts have been carried out in
orderto con rm the existenceof proton halos.

The caseof 8B is unclear. A measuremen of its electric quadrupole
momert [Min92] shoved a large enhancemenin comparisonwith that of 8Li,
its mirror nucleus. This indicates a large deformation of 8B, suggestinga
proton-halo structure. But its interaction crosssections[Tan88 do not shav
any signi cant enhancemen in comparisonwith its neighbours. Moreover,
a microscopiccalculation of the 8B structure [BDT94] could reproduce the
large electric quadrupole momert without any notion of halo.

In the caseof 'F, it is usually admitted that its ground state does not
exhibit a halo structure [Oza94. Howewer, it seemsthat its excited state
displays a halo [KB98]. This can be explainedby modelling ’F asa proton
loosely bound to a 0 core. In that model, the ground state is viewed as
a d wave, i.e. the relative orbital momertum of the proton and the core
is assumedto be equalto | = 2. This meansthat a certrifugal barrier is
addedto the Coulomb one. The conjugatede ects of both terms hinder the
proton for tunnelling far outside the potential well and, therefore, prevert
the formation of a halo. The excited state, howewer, is modeledby an s wave
(i.,e. with | = 0). In that case,no certrifugal term is addedto the Coulomb
potential. A proton halo cantherefore appears.

Ozawa et al. [0za94 have measuredhe interaction crosssectionof 1’Ne.
They found a relatively larger value than those of its isobars’N and '’F,
interpreting this with a Glauber-type model asan enhancemenof the proton
radius. This might be seenasthe sign of a two-proton halo.

3Mirror nuclei are isobarswith inverted numbers of protons and neutrons. In this case,
8B cortains 5 protons and 3 neutrons whereas®Li has 3 protons and 5 neutrons.
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1.4 Summary

In this rst chapter, we havetried to introducethe readerto the halo nucleus
concept. This conceptarosewhen the study of neutron-rich nuclei became
possiblethanks to the appearanceof radioactive nuclear beams. It hasbeen
found that somenuclei near the neutron drip line exhibit an anomalously
high matter radius. This is interpreted as a new nuclear feature in which
a core cortaining most of the nucleonsis surroundedby one or two loosely
bound neutronsthat have a high probability of presenceat a large distance
from the core. Theseneutrons constitute what is called the halo.

This structure seemsto appear in nuclei preserning low one- or two-
neutron separation energies. But a low binding energyis not a su cien t
condition to infer the presenceof a halo structure. To claim that a nucleus
exhibits a halo pattern, it is necessaryto demonstratethe existenceof the
core plus halo con guration of the nucleus. The currertly best established
halo nuclei are 'Be, with a one-neutronhalo, and ®He, *'Li and **Be, with
a two-neutron halo.

Many experimerts have beenproposedas probesinto the halo structure.
Theseinclude the measuremen of interaction crosssectionsthat enables,
through a Glauber-type model, the deduction of the nuclear matter density.
The halo-breakup meanism has also beeninvestigated. A halo structure
should indeed lead to large dissciation crosssectionsin comparisonwith
other inelastic medanisms. Furthermore, becauseof the large spatial exten-
sion of the halo, one expects a narrow momertum distribution of the core
or the halo neutrons after a breakup reaction. Measuremets of electromag-
netic momerts have alsobeenusedasa tool for the study of halo structure.
If the electromagneticmomerts of the studied nucleusare closeto those of
its neighbours, one can assumethat its proton density does not exhibit a
signi cant deformation. This can be a clue for the existenceof a coreinside
the nucleus. The samekind of information can be obtained by measuringthe
charge-dhanging crosssections. Other techniques, like core-breakupmeda-
nismor deca, are usedasprobesbut were not detailed here.

Thesetechniqueswere usedto verify the halo structure of nuclei like Li
or 1'Be. Recen experimerts have been performed in order to systemati-
cally investigatethe neutron drip line. They seemto have uncovereda halo
structure in °C and maybe in 1°C.

Finally, we have conducteda brief examination of the proton halo struc-
ture. This seemsto be much less probable than the neutron one. The
Coulomb barrier indeed inhibits the dewelopmen of wide proton distribu-
tion. The major proton-halo candidatesare 8B, ’F in its rst excited state,
and more likely *’Ne.

The next chapters will examinesthe study of the Coulonmb breakup of
halo nuclei. This medanism seemdo be very likely in collisionswith heavy
targets, as showvn in Sec.1.2.3. Moreover, it is one of the most useful tools
for studying properties of halo nuclei [Bla93, Nak94].
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Chapter 2

Theoretical study of the
Coulom b breakup

As seenin the previouschapter, Coulomb breakupis oneof the tools usedto
study halo nuclei. In this reaction, the halo is dissaiated from the core by
interaction with a heavy target. This reactionis of particular interestbecause
of the dominart role played by the Coulonb interaction. This indeedtendsto
reducethe uncertairnties related to the modelling of the nuclear interaction.
With a good approximation, the breakup canbe seenasa transition between
a bound state of the halo nucleustowards the cortinuum due to a varying
Coulomb eld.

This chapter examinesthe main approximations usedto study theoreti-
cally the Coulomb breakup of one-neutronhalo nuclei. In the rst section,
we give the theoretical framework within which most of the current models
lie. In the secondsection, we give a brief overview of somefully quantum
appraximations usedto study the Coulomb breakup of halo nuclei. In the
last section of this chapter, we detail the semiclassicabpproximation which
is usedin this work. This approximation leadsto the resolution of a time-
dependent Scredingerequation. We alsopresett the rst-order perturbation
which allows the calculation of an approximation of the solution of this equa-
tion. Afterwards, we describe the main numerical techniquesusedto solwe
the time-dependert Scrodinger equation.

2.1 Theoretical framew ork

We are concernedby a collision betweena projectile P (the halo nucleus)
and a target T. More precisely we considerthe reactions leading to the
breakup of the former. The target is assumedo be a pointlik e, structureless
particle of charge Zr and massmy. This meansthat the excitations and
fragmertations of the target are neglected. Sincewe study the breakup of
the projectile into its coreand the halo nucleon,the projectile is modeledby
a two-body structure made up of a pointlik e fragmen f (the halo nucleon)
linkedto a pointlik e structurelesscorec (containing the other nucleons). This
implies that the reactionsincluding the nucleonsof the core (lik e excitations

19
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or fragmertations of the core) are neglected. The chargeZp and massmp
of the projectile are obtained from thoseof the coreand the fragmert: Zp =
Z.+ Z¢, and mp = m¢+ m¢. The latter expressionimplies that we neglect
the massvariation due to the binding energyof the two-body projectile.

In order to descrile the relative position of the three \particles” T, ¢
and f in the rest frame of their certre of mass,we usethe following Jacobi
coordinates(seeFig. 2.1). The vectorr denotesthe relative position between
the coreand the fragmert:

r=R: R (2.1)

The vector Rpt refersto the position of the target relative to the projectile
certre of mass:

Rer = Rt Rp; (22)
wherethe vector Rp refersto the projectile certre of masscoordinate:
Mc My
Rp= —R.+ —Rj: 2.3
P me c mp f ( )

From theseexpressionsye canobtain the coordinate of the target relative
to the core

ms
Rer = Rpr + —r; 2.4
cT PT Mp ’ ( )
and to the fragmert
Mme
Rit =R —Tr: 2.
fT PT me (2.5)

Following theseassumptions,the Hamiltonian of this three-body system
expressedn the certre-of-massframe reads
h2

H =
2 pt

R,, T Hot+ Ver(Rer) + Vit (Ry7); (2.6)

where pt is the reducedmassof the projectile-target system:

mr+Mmp
= ——: 2.7
PT S e d m (2.7)
In expression(2.6), V.t and V1 are the potertials which simulate the
interaction of the target with the core and the fragmert respectively. Hy is
the two-body Hamiltonian modelling the projectile internal structure:
hZ
Ho= 5 r+ Ver(r); (28)

where is the reducedmassof the projectile:

= e (2.9)
Mme+ Mg '
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Figure 2.1: Relative coordinates of the three-body model usedto descrike
the Coulomb breakup of halo nuclei.

The eigenstatesof this Hamiltonian correspnd to the dierent states
of the core-fragment system. The negative energy states model the bound
statesof the halo nucleus. They aredenotedby . . The number n reminds
the discrete nature of the bound spectrum, while  correspndsto all other
quartum numbers. The . arethe solutions of

Ho n (r)=En n (r); (2.10)

whereE,. < 0is minus the binding energyof the system. In the following,
the ground state of the projectile will be denotedby n = 0 and g, and its
energyby E,.

The positive energy states, or cortinuum states, simulate the unbound
system. They corresppnd to the scattering of the fragmert angl the corewith
a kinetic energyE. They arerepreseted by . , wherek = 2E =histhe
wave number and  denotesall other quartum numbers. These states are
the solutions of

Ho i (1) = E & (): (2.11)

In order to study the breakup of the projectile, we seekthe solutions of
the three-body stationary Scredinger equation [SLYVO03, FL96]

H (r;Rpr) = E( r;Rp7); (2.12)
with the scattering boundary condition:

( r;RpT)R !1 gK oRpr+: o ,(r) + outgoing waves (2.13)
pr!
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The rst term of the right hand side of (2.13) correspndsto the state
of the system prior to the collision: the projectile is assumedto be in its
ground state . , and its motion relative to the target is characterisedby
the wave vector K 3. The presenceof the \:::" remindsthat this scattering
wave is not a purely plane wave but is distorted by the long-rangeCoulomb
interaction.

The secondterm represeis the outgoing sphericalwaveswhich descrike
the systematfter the collision. The di erent outgoing channelsconsideredin
the presert model comprisethe elastic scattering of both nuclei, the inelastic
scattering (i.e excitation from the ground state towards other bound states
of the projectile), and the breakup of the projectile. Therefore, transfer
reactionsare not considered.

From the generalcollision theory (seee.g. [FL96, Chapter 5]), the cross
sectionfor sud processeseads

d
dp.dp; dp+
wherethe subscriptx; denotesthe state of the halo nucleusin the outgoing
channelcorrespnding to the reaction of interest, with x standingfor either n
or k. The two Dirac deltas ensurethe momerium and energyconsenations
from the initial state to the nal state. The formal expressionof the transi-

tion matrix elemen T¢; is provided from the Lippmann-Sdwinger equation
[FL96, Chapter 5]:

I jTtij® (Pc+ P + P+ Pp) (Ec+ Ef + Er  Ep Q)(2.14)

Tri= K« Reres()iVir(Rer) + Vit (Re1)j (13 Rpr)it  (2.15)

In this expression,eiK x Rere «. (r) describesthe three-body systemin
the outgoing channelof interest: the projectile isin state . , andits relative
motion to the target is descriked by the wave vectorK . . Asin (2.13), the
\:::" represen the distortion of the scattering wave due to the Coulomb
interaction. is the solution of Eqg. (2.12) with the boundary condition
(2.13).

In most of the casesEq. (2.12) cannot be solved without any further ap-
proximation. The following sectionexaminessomeof theseappraximations.

2.2 Quantum analysis of the Coulom b
breakup

In this section,we give a brief overview of someapproximations usedto study
the breakup of halo nuclei quantum medanically. As they are not usedin
this work, we refer the interestedreaderto recert reviews[ANO3], [SLYVO03],
and [TS014 for more information.

2.2.1 Coupled discretised contin uum channels

In the coupleddiscretisedcortin uum channels(CDCC) approximation [Kam86,
ANO3, TS014, the relative motion of the projectile componerts is descriked
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by a discretesetof squareintegrablestates ;. . Besideshe projectile Hamil-
tonian bound states ,. (2.10), this set cortains a discretiseddescription of
the cortinuum. The discretisationis performedby grouping the exact scat-
tering states . (2.11) into bins. Eadh bin correspndsto a given set of
quartum numbers , andto a nite interval [k; 1;k;i]. The squareintegrable
bin state ;. is constructedby averagingthe scattering states over the cor-
responding wave-number interval:

1 %k
i (r)= |E>ﬁ ) w(k) . (r)dk; (2.16)
i1
wherew is a weight function usually chosenequalto unity, and
N = ) jw(k)j2dk (2.17)
i1

is a normalisation factor chosenso that
hi jji= 4 (2.18)

Thesestates are therefore seenas discrete, normalised eigenstatesof the
projectile Hamiltonian Hy:

Ho i ()= & & (r); (2.19)

where ;. is the energyassaiated to the bin (i; ). It correspndsto E,.
(2.10) for the projectile bound states, and to the averageenergy of the bin
for the discretisedcortinuum states.

Using this bin set, the solution of (2.12) is appraximated by

CDCC(r;RPT):)f i (r) i (Re7); (2.20)

where ;. descrite the relative motion of the projectile and the target. In-
troducing this approximation in Eg. (2.12) leadsto the resolution of the
following set of coupledequationsfor the ;. :

R..,T i E i (Rer)

hi (NiVer(Rer) + Vit(Re1)] ; (N)i 5, (Rpr) = 00 (2.21)

h2

+

is

These equationscan be solved numerically. The breakup crosssections
can therefore be appraximated by replacingin (2.15) the exact three-body
wave function by the CDCC solution (2.20). This technique has been
successfullyapplied to study the breakup of the deuteron [Kam86]. It has
also beenusedto investigatethe Coulomb breakup of 1*Be [NTJ96]. More
recerly, this technique hasbeenapplied to the calculation of the breakup of
8B, a candidate one-protonhalo nucleus[TNTO1, MTT02, Mor01].
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2.2.2 Adiabatic appro ximation

As seenin the previous section,the CDCC method leadsto the numerical
resolution of a set of coupled equations. Though feasible,this technique is
rather heavy from a numerical point of view. In somecaseskq. (2.12) canbe
solved analytically usingthe adiabatic approximation [JAT97, Tos98 ANO3,
TS014. This approximation relieson the two following assumptions:

() The interaction Vi1 betweenthe fragmert and the target is assumed
to be negligible(i.e. Vi1 ' 0).

(i) The relative motion of the coreand the fragmert is treated adiabati-
cally. That is to say that it is presumedto be much lessenergeticthan the
projectile-target motion.

The rst assumptionimplies that this method may only be applied to
neutral fragmers in Coulomb dominated reactions. This meansthat this
technique cannot be usedto study the breakup of proton halo nuclei (like
8B), and that nuclearinduced breakup cannot be investigated.

With this assumption,Eqg. (2.12) can be rewritten as:

" y 4
2 or Rer + VCT(RCT) + HO E ( r,RpT) =0 (222)

The boundary condition (2.13) is kept unchanged.

The secondassumptionmeansthat the relative motion of the core and
the fragmernt is presumedto be much slower than that of the projectile certre
of massand the target. It implies that the energytransferredto the projec-
tile during the collision must remain much smaller than the incidert kinetic
energy of the projectile. This requiresthe incident kinetic energy of the
projectile to be large in comparisonwith its binding energy This adiabatic
assumptionmeansthat we can approximate the projectile Hamiltonian Hg
by a constart. This constart is chosenequalto the projectile ground-state
energyE, (see(2.10)) sothat the approximate solution of Eq. (2.22) satis es
the incident boundary condition (2.13). This meansthat the full spectrum
of Hg is degeneratewith the ground state. From the above, we seethat the
adiabatic appraximation is rather well suited for the study of the Coulonb
breakup of neutron-halo nuclei at high energy

The three-body wave function obtained in the adiabatic approximation

AP is thereforethe solution of

h2

2 pr

#
Rs+ + VCT(RCT) + EO E AD (r ; RPT) =0 (2-23)

Sincethe core-fragmeh relative coordinate r actsin this equationasa mere
parameter, AP is factorisedinto

AD(r : RPT) = F(r) ) (RCT)1 (224)

where ) is a distorted wave describingthe Coulonb scattering of the core
and the target:
" 4

R+Va(R)+Ey E ®(R)=0; (2.25)
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with the boundary condition

M (R) ) gK oR+: 4 outgoing waves (2.26)
As mertioned in Sec.2.1, the scattering wave appearingin the rst term of
the right hand side of this expressioris distorted by the Coulomb interaction
betweenthe coreand the target.
With condition (2.26), the solution (2.24) of Eq. (2.23) which satis es the
incident boundary condition (2.13) reads[Tos98

Kol 0 (Rer): (2.27)

P (riRpr) = o o(1)Em

The rather complexdependenceof this expressionin r justi es that this
solution includes componerts which descrite the breakup of the projectile.
However, due to the short range of the projectile ground-state, AP tendsto
zeroat larger, wherebreakup componerts are signi cants. This meansthat
this description of the projectile breakup is inaccurate at larger.

The transition matrix elemen T¢; appearing in the expressionof the
breakup crosssection (2.14) is therefore calculated in its post-form [FL96,
Chapter 5]. As for the CDCC method, the exact three-body wave function

is replacedby its adiabatic approximation AP

T = beKr aRe o ORIV (] "2 (r;Rpr)i; (2.28)

whereR; .7 is the position of the fragmert relative to the core and target
certre of mass;K ¢ .7 is the correspnding wave vector. The short range of
the nuclear potential Vi ensuresthat the calculation of the breakup tran-
sition does not require valuesof AP at larger. That is to say that the
inaccuraciesmertioned above should not play any signi cant role in this
calculation.

This method has been applied to the study of the Coulomb breakup
of the deuteron [Tos98 TRJ98]. The Coulomb breakup of 'Be and °C,
two one-neutronhalo nuclei, have alsobeenstudied in the framework of the
adiabatic approximation [BTT98a]. In Ref.[BTT98b], the Coulomb breakup
of the two-neutron halo nucleus ®He has been investigated with the same
technique.

2.3 Semiclassical appro ximation and the time-
dependent Schreodinger equation

In the previoussection,we introduced somemethods that are usedto study
the Coulomb breakup of halo nuclei. In these methods, the three-body
Sdiredinger equation is solved fully quantum medanically. In this section,
we presen the framework of the semiclassicabpproximation which is used
in this work.
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2.3.1 Time-dep endent Schreodinger equation

In the semiclassicabpproximation [AW75], the relative motion of the pro-
jectile and the target is treated classically This meansthat the projectile
is assumedto follow a classicaltrajectory. This trajectory is computed con-
sidering a global projectile-target interaction Vp1. Sincewe are dealingwith
heavy targets, this interaction is usually seenas the Coulonb interaction
betweenthe projectile and the target. Howeer, a nuclearterm may be in-
cluded as well. The quantum variable Rpt correspnding to the position
vector of the target relative to the projectile certre of massis thus replaced
by the classicaltime-dependen variable R (t) describingthe trajectory.

Along this trajectory, the projectile is a ected by the varying Coulomb
and nuclear elds of the target. The halo nucleusis thereforeseenasewlving
in atime-dependert potential simulating its interaction with the target. This
ewlution is treated quantum medanically. That is to say that the halo
nucleusis represeted by a wave function  which is the solution of the
following time-dependent Schredinger equation

ih%(r;t) = H(t)( r;t); (2.29)
wherethe time-dependert Hamiltonian H reads
H(t) = Ho+ V(1); (2.30)

wherethe spatial dependencas understood. Hj is the Hamiltonian modelling
the projectile internal structure (2.8), and V is a time-dependen potertial

simulating the projectile-target interaction. This potential consistsof the
residual interaction betweenthe projectile fragmerts and the target. It is
composedof the sumof V.t and Vst (2.6) to which a global projectile-target
interaction Ve is deduced.The time dependenceof V is dueto the replace-
mert of the quantum variable R p1 by its classicalappraximation R (t) which
dependson time. Therefore,V reads

V() = Ver(Rer(t) + Vit (Rer (1)) Ver(R(1)); (2.31)

where the time-dependent vectors R.r(t) and R¢1(t) are obtained with
Egs.(2.4)and (2.5) respectively, using R (t) insteadof Rpt.

This appraximation is valid under the following two conditions [AW75]:

(i) The wave padet represeting the quartum medanical relative motion
of the projectile and the target is su cien tly narrow.

(i) The energyspreadofthat padet is smallin comparisonwith its mean
energy

Condition (i) merely indicatesthat the wave padket must be su cien tly
localisedso that it can be appraximated by a classicalpoint. This will be
ful lled if the radial spread Rpt is much smallerthan the characteristic di-
mensionof the system. This dimensioncan be appraximated by the classical
impact parameter b characterisingthe classicaltrajectory. This reads

Rpt b: (232)
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Condition (ii) correspnds to the fact that the incident beam must be
monaochromatic so asto allow a classicaldescription of the relative motion.
This can be expresseds

Ppr
Ppr

1; (2.33)

wherePpt = prVisthe momenium of the relative motion with initial group
velocity v, and Ppt its spread. Assumingthat the latter is given by the
Heiserberg uncertainty principle [CDL73, Chapter I]:

Per  h( Rer) Y (2.34)

we obtain the secondcondition
h

pTV Rpr

Combining (2.32) and (2.35) leadsto the condition

1 (2.35)

b pTV
h

In our caseb > 10 fm, p7 10 GeV/c? and v 0:3c where c is the
speedof light (seeSecs5.2.3,6.2.3and 7.2.1). The condition is then ful lled
(2Lt 150).

Furthermore, sincethe relative motion of the projectile and the target is
treated classically the energytransfer betweenthis motion and the intrinsic
motion in the projectile is not taken into accourt. This meanthat for the
semiclassicabppraximation to be valid, this energytransfer must be negli-
gible. In other words, the excitation energy of the projectile must be small
comparedto the relative motion energy Sincethe excitation energieswe
considerin our calculationsdo not exceed5 MeV, and that the kinetic en-
ergy of the projectile we consideris about 700MeV, this condition is ful lled
too.

Eq. (2.29) is solved with the initial condition that the projectile is in its
ground state prior to the collision. This reads

1; (2.36)

(rth 1 )= o ,(r): (2.37)

For ead trajectory, the breakup probability per energyunit can be com-
puted from the calculation output ( r;t! +1):

dPy,

4E (E;b/ X e (DjCr;t! 1)ij3 (2.38)

where . are the cortinuum states de ned in (2.11) The breakup cross
sectionis obtained by summingthe probabilities computedfor all the trajec-
tories:

U - _
£ (EiD=2  _=(E:bbdb: (2.39)
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2.3.2 First-order perturbation

When the time-dependert potential V is small, the solution of (2.29) can
be approximated usingthe rst-order perturbation theory (seee.g. [CDL73,
Chapter X1 11]). This is the casewhen, for example,the ewlution of the wave
function is computed for distant trajectories (i.e. correspnding to large
impact parameters).

In the perturbation theory, the time-dependert wave function is dewel-
oped upon the basisof Hy eigenstates.With the initial condition (2.37), the
coe cien ts of this dewelopmen on the cortinuum statesare

iEt=h Z ¢

hie OFCrDi= S € hig DIV o ,(id  (240)

where! = (E Egp)=h. In this expressionE isthe kinetic energybetweenthe
core and the fragmert of the projectile after breakup, and Eg is the energy
of the ground state . ,.

From (2.40), we can obtain a rst-order approximation of the breakup
probability (2.38):

APy X 1 . .
e D/ et OV o (idtdE 24D

Wewill seein Sec.3.4.3that this expressiorcanbe calculatedanalytically
under somegeneralconditions.

2.3.3 Exact resolution of the time-dep endent
Schrodinger equation

If the potential V is not small enough,the rst-order perturbation theory
presened in the previoussectionis no longer valid, and higher orders must
be takeninto accourt. This canbe doneby solving Eq. (2.29) \exactly". By
exactly, we mean numerically solving the equation without any assumption
about the magnitude of V.

Recerly, seeral techniques have been deweloped to solwe the three-
dimensional time-dependen Sdredinger equation (2.29) [KYS94, EBB95,
TS01b, LSC99 Mel97]. In this section, we present those methods, their
main advantagesand drawbads. We will group them following the way of
represeting the wave function, which correspndsto the main di erence be-
tweenthem. For simplicity, the spin dependenceof the problem will not be
consideredhere.

Partial-w ave expansion

This method is usedby many authorsto study the Coulomb breakup of halo
nuclei. For example,Kido, Yabana,and Suzukiusedit to study the breakup
of 11Be on a 2%8Pb target [KYS94, KYS96]. Esbensen,Bertsch and Bertulani
studied the Coulomb breakup of 'Li by modelling this two-neutron halo
nucleusas a dineutron looselybound to a °Li core[EBB95]. More recerily,
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Typel and Shyam used this technique to analysethe Coulomb breakup of
11Be and °C [TS014.

The main ideaof this method is to considera partial wave decomposition
of the time-dependert wave function :

(r;t)y=r 1 Um(r; )Y, () ; (2.42)

Im

wherer  (r; ) is expressedn sphericalcoordinate. The angular functions
Y,™ are the usual sphericalharmonics[CDL73, Appendix A-VI]. The advan-
tage of this expansionis that the projectile Hamiltonian Hg is diagonal in
the sphericalharmonic basis:

( " #
A h2 @ I(1+1)
HmjHejIMmY = 5 @ =

Ho(r) 1o mmo (2.43)

)
+ Vclf (r) 1o mmo

Substituting (2.42) into (2.29) leadsto the following set of coupledequa-
tions

. @Im . _ X . Ct) -
ih (r;t) = Rim:omo(r; t)Ujomo(r; t); (2.44)
@ 19mO
where
Rimiomo(r;t) = HmjHq + V(t)jI;mq

Ho(r) o mmo+ Y™ () VOYE() d © (2.45)

In order to compute the time ewlution of the wave function, the time
variable is discretisedusing a constart time step t. The wave function at
time t+ tisthen computedfrom that at time t usingthe ewlution operator
U (seeSec.4.3.1and Ref. [CDL73, Appendix F-I11] for details):

(r;t+ t)y=U@t+ tt)( r;t) (2.46)

The major di erence betweenthe algorithms detailed in Refs. [KYS94],
[EBB95], and [TSO1b]liesin the choiceof the approximation of the operator
U. Kido et al. , aswell as Esbensenet al. , considera factorisation of this
operator in which both terms Hy and V of the time-dependent Hamiltonian
are split:

ot ot
Uit+ tt)' exp |?Ho exp |?V(t) : (2.47)
They divide the time step into two substeps. First, the e ect of the time-
dependent potential is takeninto accoun. For this, the exponertial of V is
approximated by its Taylor expansionup to the linear term in  t:

Um(r:t+  t=2) = um(r;t) irt>< HmjV (O)jl1MmY ujamo(r;t):  (2.48)
10mo
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Second,the e ect of Hg is considered. Sincethis Hamiltonian is diagonal
in the spherical harmonic basis, the ewlution of ead radial wave function
can be computed separately Using the (1,1) Pade appraximation of the
exponertial of this operator [MVL78] leadsto
um(r;t+ t)= 1+ i—tH'(r) 1 1 it
Im\!; - 2 0 2
Typel and Shyam, howewer, do not split the ewlution operator. They use
the following approximation

HU() Um(rt+  t=2):(2.49)

, ot ! ot

Ut+ t;t) 1+ |2hh 1 |2hh ; (2.50)
where h stands for the matrix whoseelemerts are the hjy. om0 de ned by
(2.45). This correspndsto the (1,1) Pade approximation of the exponertial
of the time-dependert Hamiltonian H (2.30) exp 1 t=hH (t).

In both approadies,the radial variable is discretisedover a mesh,and the
di erential operator appearingin Hy (seeEq. (2.43)) is appraximated by a
nite-di erence technique.

The ewlution of the wave function is thus performed step by step by
applying the approximation of the ewlution operator successigly to the
wave function. The calculation starts at time t;, from the projectile ground
state. This initial time hasto be chosensu cien tly negative so that the
perturbative potential V can be neglected. The calculation stops at tgy
whenthe e ect of the target on the projectile becomesegligible again.

This algorithm presens the main advantage that the decomposition in
partial wavesis particularly well suited to represeting the projectile Hamil-
tonian Hy. As mentioned above, Hy is indeeddiagonalin this angular basis.
Moreover, ascanbe noted from expression2.43), the core-fragmem potential
canbe function of the orbital momertum |. This leadsto a fair description of
the projectile sinceit usually enablesoneto reproduceaccuratelythe bound
spectrum of the halo nucleus.

The major drawbadk of this method arisesfrom the multip ole expansionof
the time-dependen potertial V (seeEqg. (2.45)). This requiresan analytical
treatment of the potential prior to the ewlution calculation. Moreover, it
leadsto the coupling of the radial wave functions (seeEgs. (2.48) and (2.50)),
which seriouslycomplicatesthe ewlution calculation.

Cartesian mesh

Another non-perturbative technique for solving the time-dependent Sdreo-
dingerequationhasbeenproposedby Lacroix, Scarpaci,and Chomaz[LSC99.
In [FSLO2],this method hasbeenusedby Fallot et al. to study the Coulomb
and nuclear induced disscciation of !Be. It should be noted that the time-
dependent equation they consideris slightly dierent from Eqg. (2.29). In
their approad, the classicaltrajectory is usedto model the relative motion
of the core c and the target T, whereasit correspndsto the motion of the
projectile certre of massrelative to the target in the approximation descriked
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in Sec.2.3.1. This meansthat they considerthe ewlution of the halo-neutron
wave-function instead of that represeting the projectile internal structure.
This leadsto the following single-particle Sctreodinger equation

#

+ Ver (r - Re(t)) + Vir(r Re() * (rt);(2.51)

2

2m

ih%(r 1) =

where' is the halo-neutronwave-function, and my the massof the nucleon.
r is the vector coordinate of the neutron, while R, and Rt correspnd to
the positions of the core and the target respectively. These are obtained
consideringa classicalCoulomb trajectory for the core and target motions.
The main idea of this method is to discretisethe wave function over a
three-dimensionalCartesian mesh. The ewlution calculation is performed,
asin the other methods, by discretisingthe time variable and using an ap-
proximation of the time-ewlution operator. This operator is split so as to
separatethe kinetic energyoperator from the time-dependert potertials:

ot
I4hmID

exp i NVt Re()+Vir(r  Rr()]

Uit+ tt) ' exp

ot o,
|mp (2.52)

exp
wherep = ihr isthe momerium operator.

The advantage of this decompsition is that the potential factor of the
ewlution operator is diagonal when calculated on the Cartesian mesh. The
momertum-operator factor is diagonalif expressedn the momertum space.
The time ewlution can therefore be performed quite easily if ead factor of
(2.52) is expressedn the right space. Lacroix et al. proposeto divide the
time step t into three intermediate steps. At ead of these substeps,a
di erent part of the ewlution operator is applied to the wave function. This
meansthat a spacechangeis neededbetweentwo successig substeps.This
spacechangeis performedwith a fast Fourier transform.

As in the method descriked in the previous section, the time ewlu-
tion starts with the condition that at time tj; ! 1 , the projectile is in
its ground state. The calculation stops at su ciently large toy, when the
projectile-target interaction no longer modi es the wave function.

The major advantage of this method liesin the fact that ead factor of the
ewlution operator can be treated in the spacein which it is diagonal. More-
over the expression®f the potertials appearingin (2.52) are easily evaluated
and do not require any multip ole expansion. Howewer, the spacechange,al-
though facilitating the ewolution operator treatment, is time-consuming.

The major drawbadk of this technique is the fact that no orbital-momen-
tum dependenceof the core-fragmen potential can be taken into accoun.
This leadsto a rather poor description of the projectile internal structure
sinceonly one of its bound states can usually be reproduced.
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The present metho d

The method we dewelopin this work to solve the time-dependert Scredinger
equation is basedupon the technique introduced by Melezhik for atomic-
physics problems [Mel97]. This technique was extendedto nuclear physics
and applied rstly to study the Coulomb breakup of 'Be [MB99]. As for
the other two methods, the time variable is discretised using a constart
time step t, and the ewlution of the wave function is calculated using an
appraximation of the ewolution operator U.

The main idea of this techniqueis to expandthe projectile wave function
upon a three-dimensionalspherical mesh. This leadsto a diagonal repre-
sentation of the time-depender potertial V (2.31). As the elemeits of this
matrix merely consistsof the values of the potential at mesh points, the
treatment of V is both accurate and straightforward. Moreover, a simple
basis change enablesus to obtain the samerepresemation of the projectile
Hamiltonian Hg (2.8) asin the partial-wave expansionmethod.

This meansthat this technique conbinesthe advantagesof the two pre-
cedingmethods: afair modelling of the halo nucleusand an easilycomputable
represemation of the projectile-target interaction. A splitting of the ewlu-
tion operator U into factors depending on either Hy and V enablesus to
dewelop a simple time-ewlution algorithm.

This method aswell asits practical implemertation will be described in
the two following chapters.



Chapter 3

Mo del description

In the previouschapter, we introducedthe semiclassicaapproximation which
constitutes the main theoretical badkground of this study. In this approad,
the breakup of halo nuclei is investigatedthrough solving a time-dependert
Sdiredinger equation (2.29). The corresppnding Hamiltonian H consistsof
two terms (2.30):

H(t) = Ho+ V(); (3.2)

wherethe spatial dependenceis understood. The rst term H, correspnds
to the internal Hamiltonian of the halo nucleus(2.8) while the secondterm V

is atime-dependert potential modelling its interaction with the target (2.31).

In this chapter, we descrilke accuratelythis time-dependent Hamiltonian.

The rst sectionexaminesthe model of halo nucleuswe consider. It consists
mainly of the descriptionof the potential we usein the projectile Hamiltonian

Ho. In the secondsection,we explain how the projectile-target interaction is
represeted. The third part of this chapter comprisesthe di erent choicesof
classicaltrajectoriesin our study. In the fourth section,we detail the calcu-
lation of the crosssectionsin this model. In the last section,we analysethe
symmetry of the time-dependent Hamiltonian and deducefrom that analysis
an important symmetry property of the wave function.

3.1 Mo del of halo nuclei

3.1.1 Two-body structure

We have seenin Chapter 1 that halo nuclei exhibit a strong cluster struc-

ture. Therefore,they canbeviewedasa heary coresurroundedby oneor two

looselybound neutrons. This study focuseson one-neutronand one-proton
halo nuclei. Their relatively simple structure is describted by two-body sys-
tems: a pointlik e structurelesscore c linked to a pointlik e fragmert particle

f (i.e. the halo nucleon). In this work, the massm of the nuclei are assumed
to be proportional to their massnumber A:

m= Amy; (3.2)

33
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wheremy, the massof one nucleon, is given by

2

= 20,736 MeV fm 2 (3.3)
2my

The internal structure of sud a nucleusis therefore descriked by the
Hamiltonian Hg (2.8)

h2
Ho= o= o+ Ve (r); (3.4)
where is the reducedmassof the two-body structure, and r is the relative
coordinate of the fragmert to the core. The core-fragmen interaction is
modelled by the real local potential V. It is chosensoasto reproducethe
bound spectrum of the nucleusand sometimessomeof its unbound resonan
states.

In order to obtain an accurate description of the projectile, the Pauli
principle shouldbe takeninto accourt (seee.g. Ref. [CDL73, Chapter XIV]).
According to this principle, the occupied orbitals of the core are forbidden
to the fragmert nucleon. This can be doneonly by using a fully microscopic
description of the nucleus[Des97. This descriptionleadsto a non-local po-
tential modelling of the core-fragmen interaction, which would be di cult
to implemert in the presen state of our model. Howevwer, it hasbeenshown
in Ref. [BFW77] that cluster modelsusing deeplocal potentials can simulate
someof the e ects of the Pauli principle. In addition to the physical bound
states of the system, these potertials also include deep unphysical bound
states. Their presenceallows the wave function of the physical states com-
puted with that local potential to resenible those obtained in a microscopic
calculation. Theseunphysical statesare usually seenasthe occupiedorbitals
of the core. The potential Vi must therefore be chosenso that it includes
asmarny unphysical bound statesasthere are occupiedorbitals in the core.

In our model, the core-fragmen potential is composedof a certral term
to which a spin-orbit coupling term is added

Ver 1) = Vo(r) + 5L 1 Ve (1) (3.5)

In this expression,L is the relative orbital momertum of the fragmert and
the core,and | is the fragmert spin. In this study, the spin of the coreis
neglectedwhile the spin of the fragmert | is assumedio be xed.

The certral term reads

Vo(r) = Vif (r;Ro; @) (3.6)

with the usual Woods-Saxonform factor [Kra88, Chapter 5]

r RO 1
f(r;Rp;a) = 1+ exp a X (3.7)

This expressionis chosenso asto roughly re ect the matter density of the
core. From this viewpoint, Rq correspndsto the radius of the core (R '
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1:2A%2 fm), while a is the di usenessof its distribution (a' 0:6 fm). The
spin-orbit coupling term hasthe Thomas form [Law80, Chapter 1]

1d
Vi (r) = Vis Faf (r;Ro; a): (3.8)

When the fragmert is charged, e.g. in proton-halo nuclei, a Coulomb
potential is addedto the nuclear interaction. It is chosenas the potertial
Vc dueto a uniformly chargedsphereof radius R¢ (the core) acting upon a
pointlik e charged particle (the fragmert) (seee.g. [Hod78, Chapter 3]):

8
2 1ZcZs € 3 r2 r <R
2 C
Ve(r;ZeiZiiRe) =, 2% ofe RE (3.9)
: Af for r RC

Corresponding to the radius of the core, R¢ is logically chosenequalto the
radius Ry appearingin the expressionof the Woods-Saxonform factor (3.6).

The parametersof the potentials are chosensoasto reproducethe bound
spectrum of the halo nucleus and, in some cases,someresonances. The
parametersRy and a of the Woods-Saxonform factor (3.7) are set ab initio
to usual values(seeabove). Therefore,the typical energiesof the systemare
reproduced by adjusting the depths of the certral and spin-orbit coupling
terms. This usually introducesan I-dependencen V. Sincethe number of
energieso which the potertial parametersare tted doesnot exceedtwo or
three, this dependences not very strong. We usually considera certral term
with two di erent depths, one for the s-wavesand one for all other partial
waves.

The potential form factor we have just descrited is not the most general
allowed by our model. Other form factors than the Woods-Saxon(3.7) could
be used,and a more generaldependenceon the angular momertum could be
taken into account. This will be illustrated in Sec.3.1.3.

3.1.2 Hamiltonian eigenstates

This sectionexaminesthe eigenstateof the two-body Hamiltonian descriked
in the previous section. In other words, we detail the wave functions
solution of

Ho (r)=E (r): (3.10)

This eigenproblem leadsto two kinds of solution: the negative-energystates
(with E < 0) and the positive-energystates (with E > 0). The former
correspnd to the bound states of the systemwith binding energyjEj. As
mertioned in the previous section, they descrite either the physical bound
statesof the systemor the Pauli forbidden states. The positive-energystates
descrile the unbound system. They correspnd to the scattering of the
fragmert and the corewith a relative kinetic energyE.

From its generalstructure descriked in the previous section, we seethat
the two-body Hamiltonian Hg (3.4) is invariant under rotation. This means
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that its eigenstatescan be expandedinto partial waves[GP90, Chapter 6].
Their wave functions can therefore be expressedas the product of a radial
part and a spin-angular part:

pm(r) = 1 fug(r)h jljmi; (3.11)

wherel, j, and m are quarntum numbersassaiated to the orbital momertum
and the total angular momertum (seebelow), and = ( ;') is the solid
anglede ning the direction of r.

The spin-angularpart of the wave function appearing in this expression
correspndsto the eigervector jlj mi of operatorsL?, J2 and J, (with J =
L + | denoting the total angular momertum):

L2jljmi = h2I(1 + 1)jlj mi; (3.12)
JZjljmi = h?j(j + 1)jljmi; (3.13)

and
J,jljmi = hmijljmi: (3.14)

It is alsoan eigenstateof the operator | 2 related to the projectile spin:
1 %jljmi = h21 (1 + 2)jlj mi: (3.15)

Sincel is assumedto be xed, this quantum number is understood in our
notations.

This part of the wave function canbe expressedisa linear combination of
spin eigervectorsjl m;i and orbital-momertum eigenfunctionsY,™ [CDL73,
Appendix A-VI]:

hjlimi= (T mmyi )Y () jmgi; (3.16)

m; my

where (Il mym, jj m) are the Clebsh-Gordan coe cien ts?.

From the above, we seethat the radial part u;; of the wave function (3.11)
is the solution of the following eigervalue equation
(

2 2
h< d (r) +

2
M h2I(1 + 1)

2 r2

+ Vo(r)
+%U G+1) I(+21) 1+ 2D)Mi(r) wi(r)=Eu;(r): (3.17)

Sincethe bound spectrum is discreet, the solutions of (3.17) can be dis-
tinguished by an integer. We choosethis integer equal to the number n of
nodesexhibited by the radial wave function. Subsequetly, thesestatesand

1In many textb ooks (seee.g. [EdM57]), the Clebsth-Gordan coe cien ts are denoted by
(I'mym, jI1j m). For simplicity we adopt the above mentioned notation usedin [CDL73].
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their energieswill be referredto by ,;m and En; respectively. According
to (3.11), their wave functions read

aim(r) =1 tuy;(r)h jlj mi: (3.18)
Thesestatesare normalisedto unity:
z 1
K nijmk® = o [Unj (r)]dr
= 1L (3.19)

In the following, the physical ground state will be denotedby ni4j,m,, and
its energyby Eo.

The solutions aorrespanding to the continuum are distinguished by the
wave numberk = 2 E =h?. In the following, thesescattering stateswill be
referredto by ;m. Their wave functions read

kim(r) =r 1Uklj (r)h jljmi: (3.20)

Their radial part is normalisedin suc a way that
S __

Ui () ] E[cos ki FI(E;r) + sin g Gi(E; )] (3.21)

whereF, and G, are the regular and irregular Coulomb functions [AS70Q pp
597-544Jand ; is the phaseshift [Joa75 Sec.4.3].

3.1.3 Supersymmetric elimination of forbidden bound
states

We have seenin previous sectionsthat our modeling of halo nuclei includes
nonphysical bound states so as to simulate the Pauli principle. 1t seems
that the presenceof sudh forbidden states doesnot signi cantly modify the
properties of the physical bound states of one-and two-neutron halo nuclei
(see Refs. [RVB96] and [HBS99 respectively). It would be interesting to
seewhether or not these nonphysical bound states play a role in ewolution
calculations.

We needthereforea technique which enablesusto remove thoseforbidden
states. As shavn by Baye in Refs.[Bay87d and [Bay87h), this can be done
by performing a pair of supersymmetric transformations of the potential.
The resulting potential exhibits the samebound spectrum asthe initial one
but for the removed state. It is alsophaseequivalent asit leadsto the same
phaseshifts.

In this section,we give a brief overview of this theory, and referthe reader
to Refs.[Suk8], [Bay87h], and [Bay874 for details.

In orderto introducethesesupersymmetrictransformations, let usrewrite
the core-fragmen potential (3.5) in a more generalform which emphasizes
its dependenceon the orbital and total angular momerta | and j:

X . X
Ve (r) =" Vg (r)  jlj mihlj mj; (3.22)
lj m
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where the jljmis are the total angular momerium eigenstatesde ned in
(3.16).

Let us alsodenote by ﬂ”m the bound states of H, of energyEyj. The
eigenstateof positive energyE = h?k?=2 are then denotedby (k)ljm' From
(3.11), thesewave functions read

Rim(r) =1 "3 (Nh jljmi; (3.23)

wherex standsfor either n or k.
Sukumar has shovn [Suk89 that the lowest bound state of energy E g
and radial wave function uf; could be removed without a ecting the rest

of the spectrum. This is performed by modifying the potential Vo” of the
correspnding partial wave |j. Howewer, the resulting potential leads to
di erent phase shifts than those of the initial one. This meansthat the
scattering properties of both potentials di er.

In order to derive a phase-equiglert potential in which the lowest bound
state hasbeenremoved, Baye has proposed[Bay874 to apply to the super-
symmetric potential of Sukumar a secondtransformation which restoresthe
original phase-shifts. This pair of supersymmetric transformations leadsto
the new potential [Bay87h]

i oy — \/li h2 g “r 0 24,0
V, (r) = V' (1) —wln . [ugy; (r9)%dr® (3.24)
This potential leadsto the samebound spectrum as that obtained with
potential VOIJ but for the lowest energyEq; which hasbeenremoved. It also
exhibits the samephaseshifts asthe initial potential. Theseproperties can
be understood from the radial wave functions of the eigenstatesobtained
after transformation (3.24). We can easily verify that they read [Bay874

R
o Uy (rufy; (r9dr®,
"o [ug; (r9]2dr®

Here again x stands either for n in the caseof bound statesor for k in the
caseof scattering states.

Consideringn = 0 in Eg. (3.25), indicates that the ground state has
indeed beenremoved for this leadsto uélj = 0. Moreover, expression(3.25)
shows that both wave functions ug,; and up;; exhibit the sameasymptotic
behaviour. Their di erence indeedvanishesfor r ! 1 asug;. This means

that the supersymmetricpartner V,' (3.24)of the initial potential V,' leadsto
the samephaseshifts, and thereforeto the sameelastic-scatteringproperties.
Accordingly, applying the supersymmetrictransformation (3.24) for eat
Pauli-forbidden state of the core-fragmen potential (3.22) enablesus to de-
rive a new potential. This resulting potertial exhibits the same physical
properties asthe initial one (samephysical bound spectrum, and samescat-
tering properties), but doesnot include the unphysical bound states.
These supersymmetric transformations (3.24) have to be performed for
eadt partial wave Ij wherea bound state hasto be removed. Therefore,the

U>2<|j(r) = uglj(r) uglj (r) (3.25)
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nal potential exhibits a strong angular momertum dependencegwen if this
was not the casefor the initial one. This can be performedonly in models
which, like ours, allow explicit dependenceon | and j of the core-fragmen
potential.

It should also be noted that we usually do not know the analytical ex-
pressionof the radial wave-function of the forbidden statesto be removed.
Therefore, the calculation of the supersymmetric partner (3.24) of the ini-
tial potential hasto be performednumerically. As, in our method, only the
valuesof the potential at meshpoints are needed(seeChapter 4), this does
not really matter.

3.2 Pro jectile-target interaction

In the semiclassicabpproximation, the relative motion of the projectile and
the target is treated classically (seeSec.2.3). Thereforethe target can be
seenas following a classicaltrajectory in the projectile rest frame. The
in uence of the target onto the two-body projectile is then modeled by a
time-dependen potential (2.31)

ZpZ1€

V() = Ver(Rer(W) + Vir(Rer (1) 7= 2y

(3.26)
where R, R.t, and R¢1 are the relative distancesbetweenthe target and
the projectile certre of mass(2.3), the core (2.4) and the fragmert (2.5)
respectively. This potential merely consistsof the sum of the interactions
between the target and the projectile constituents. From that sum, the
interaction chosento derive the classicalrelative motion of the projectile
and the target is subtracted (i.e. Vpt in Eq. (2.31)). As we consideronly
heavy targets (i.e. with large Z1), we appraximate this interaction by a pure
Coulomb potertial. In this case,the target is therefore assumedto follow
a Rutherford trajectory [AW75]. It should be noted that nuclear e ects
could be taken into accoun. For this we should compute another classical
trajectory using an interaction which includesa nuclearterm [MS00].

Vet and Vi1 are certral potertials that simulate both Coulomb and nu-
clear interactions. In previous studies[KYS96, MB99, MBO01], the Coulonb
interaction is modeled by a point Coulomb potential while the nuclear in-
teraction is simulated by a simple impact parametercuto . This is known
asthe black-diskappraximation. It meansthat the interaction betweenthe
target and the projectile coreand fragmert is assumedo be purely Coulom-
bic above a certain impact parameterh,,,. Below that limit, the interaction
is assumedto be dominated by nuclear forcesthat lead to strong inelastic
reactions. From this viewpoint, only the trajectorieswith impact parameters
abovethe cuto aretakeninto accourt to computethe breakup crosssection.

One of the advantagesof the presert model is that the projectile-target
interaction can be easily descriked in a more realistic manner. It indeeden-
ablesus to make use of optical potentials in the time-dependen interaction
V (3.26). Thesephenomenologicapotertials are usually usedto model the
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elastic scattering of nuclei (see Refs. [Kra88, Sec.11.9] and [Joa75 Chap-
ter 20]).

They are composedof the sum of real and imaginary nuclear potentials to
which a Coulomb term is added. In a simple analysisof this theory, the real
term is viewed as responsible for the elastic scattering while the imaginary
part simulates the non-elastic processes.Becausethese processesomehav
\absorb" the ux of probability from the elastic channel,the imaginary term
is alsoknown asthe absorption term.

The analytical expressionof sud potertials is obtained by selectingthe
parametersof generalform factorssoasto t the calculatedscattering cross-
sectionsonto experimertal data. A compilation of optical potertials for
di erent projectiles and targets can be found in Ref. [PP76. The potentials
usedin this study are extracted from Refs.[BG69], [Bon85, and [Co087.
They are de ned asfollows:

Vir (r) = Ve(r;Zg;Zr;Re)  VI(r;Rg;aR) 4

| WE(iRa) Wo ot (Roido) §  (3.27)

wherex standsfor either ¢ (core) or f (fragmert). In this expression\¢ is
the point-sphere Coulomb potential de ned by (3.9), and f is the Woods-
Saxonform factor (3.7).

It should be noted that someof thesepotertials alsoinclude a real spin-
orbit couplingterm. Sinceit cannotbe takeninto accoun in our model, this
term is systematically neglectedin our calculations.

3.3 Classical tra jectory

This sectionexaminesthe description of the trajectories we considerin our
semiclassicamodel. We have seenin Sec.3.2that the relative motion of the
projectile and the target is assumedto be due to the Coulomb interaction
betweenthem. Therefore,the trajectoriescorrespnd to hyperbolic Coulomb
orbits. In rst approximation, howewer, they can be approaded by straight
lines.

Sincethe Coulonb interaction betweenthe projectile and the target is
a certral force, the classicaltrajectory followed by the target in the projec-
tile rest frame lies in a plane [Gol80, Chapter 3]. In order to descrike this
trajectory, we considera coordinate systemin which the trajectory plane
correspnds to the xz-plane (seeFig. 3.1). The x-axis is chosenalong the
apex line towards the target, and the direction of the z-axis sud that the
z-componert of the target velocity is positive. The y-axis is thereforechosen
perpendicular to the plane. The origin of the coordinate is located on the
certre of massof the projectile nucleus.

In this referencesystem,the relative coordinate of the target to the pro-
jectile certre of massR can be descriked using the dimensionlesgparameter
w de ned by [AW75, Chapter I1]:

t= 3( sinhw + w): (3.28)
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Figure 3.1: Coordinate systemusedto descrike the target trajectory in the

projectile rest frame.

wherev is the initial relative velocity, and t is the time. Parametera cor-
respondsto half the distance of closestapproad in a head-oncollision (i.e.

with impact parameterb= 0):

ZpZ1€ )
4 o prv?’

and is the eccetricity

b
= 1+ 3

The eccettricit y is related to the scatteringangle through

sin—- = L
2 - .
The componerts of R then read
8
> Xg = a(coshw+ )
S YR T Op_ .
" zg = a 2 1sinhw

(3.29)

(3.30)

(3.31)

(3.32)

This parametrisation is chosenso that t = 0 correspnds to the time of

closestapproad.
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As will be seenlater, our time-ewlution algorithm includesthe following
operator: exp(i tHo=2), where Hy is the projectile Hamiltonian (3.4) and
t is the time step (seeSec.4.3.2). This operator doesnot depend on time.
Therefore, it can be evaluated only onceprior to the ewlution calculation.
This is of great interest since the computation of this operator requires a
great number of operations (seeSec.4.3.4). Howeer, this implies that the
time step must be constart. This meansthat the parameterw cannot be
chosenas the ewlution variable; thus we cannot considerconstart stepsin
w. Therefore,relation (3.28) hasto be inverted to obtain R asa function of
t. Becausdat cannotbe performedanalytically, this is performednumerically
using the Newton-Raphsonmethod [PFTV86, Sec.9.4].

Sincewe are consideringhigh energycollisions,the projectile-target scat-
tering angleis closeto zer®. This meansthat the trajectory can be rather
well approximated by a straight line. In this casethe parametrisationis much
simpler:

R(t) = b+ vt (3.33)

whereb is the impact parametervector and v is the initial relative velocity.
Choosingb alongthe x-axis and v along the z-axis leadsto

8

2 Xg = b

s YR = 0 (3.34)
" Zg = vt

3.4 Cross sections

With the details given in the precedingsections,the time-dependert Sdcro-
dinger equation is solved with the initial condition that at time tj, ! 1
the systemis in its physical ground state,

(mO)(r ;tin) = n0|0jomo(r): (335)

Sincemy is not known, the equationhasto be solved for all the valuesit can
take.

In order to obtain information about the breakup, we needto extract
crosssectionsfrom the output of our calculation, that is to say from the
wave function at nal time tg,; ! 1.

This section looks at the calculation of these crosssections. The rst
values we consider are the breakup and inelastic crosssections. We then
detail the computation of the parallel momertum distribution.

3.4.1 Breakup and inelastic cross sections

In order to extract the breakup crosssection from the result of our calcu-
lation, we needthe probability that the projectile is unbound after collision

2For example, a collision between'Be and 2°®Pb at an energy of 70A MeV leadsto a
scattering angle of 4 at an impact parameter b= 10 fm.
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with the target (i.e. at nal time toy). In other words, we needthe probabil-
ity that the systemis in one of the positive energyeigenstatesof Hq (3.20).
With normalisation (3.21), this reads

s
u
dk

(k;B) = jhogym(r)i O(r; tow)ij < (3.36)

ljm

As already mertioned, the projection of the total angular momertum of the
initial state mg is unknown. The calculation must then be performedfor eah
possiblevalue of mg and the results have to be averaged. We then obtain

P igy= L X BP
dk o+ 1, dk

(k;b): (3.37)

With the aim of obtaining the breakug probability as a function of the
energy it su ces to usethe fact that k = 2E =h? Finally, we obtain

dPyy 1

X . . .
dgE (=P h%k 2jo+ 1 ihwim(r)i MO ton)ii? (3.38)

Mo [jm

This probability is computed for one impact parameter (i.e. onetrajec-
tory). In orderto work out the breakup crosssection,the calculation hasto
be performedfor all the trajectories, and the probabilities (3.38) have to be
summedover all the impact parameters:

dbu:2 Zl deu

£ g (Eibbdb: (3.39)

When the nuclear interaction betweenthe projectile and the target is sim-
ulated by an impact-parametercuto, the lower bound in (3.39) is replaced
by bmin-

In the sameway, the excitation probability to the bound state of energy
Enj canbe calculated:

1

X i (mo)(yp- 2.
2o+ 1 . jh anm(r )i (r; tow)ij (3.40)

o m

Pn|j (b) =

From this probability, the inelastic crosssection can be deducedby taking
the cortribution of all the trajectoriesinto accourt:

Zl
W =2 Poy(Hbdb: (3.41)

When purely real potentials are usedto model the projectile-target in-
teraction, the normalisations(3.19) and (3.21) lead to the following relation
betweenthe probabilities:

21 dPyy
dE

X
- I:)nlj (b) +

nlj

(b;E)dE = L (3.42)
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The summationin this relation must include all bound states, including the
Pauli forbidden ones. If complexnuclear potentials are included in the time-
dependen potential (3.26), the norm of the wave function is not presened.
In this case,(3.42) becomes

Z1 dp 1
bu .. —
dE (bE)dE = 2o+ 1

Prij (0) + k M) (tou)k?  (3.43)

nlj Mo

3.4.2 Parallel momentum distribution

In Chapter 1, we have seenthat information about the halo structure could
alsobe obtained by measuringthe momertum distribution of the projectile
fragmerts after breakup (seeSec.1.2.4). Sud a distribution can be calcu-
lated in our model in the following way.

As for the breakup probability, this distribution is obtained by projecting
the nal wave function onto scattering states of the projectile. However,
sincethe direction followed by the projectile fragmerts must be taken into
accoun, the positive energy states descriked in Sec.3.1.2 cannot be used
directly here. Neverthelesswe canconstruct, from thosestates, the distorted
wave correspnding to the scattering states with outgoing wave vector k of
the relative motion of the fragmert and the core,and with projection of the
fragmert spin m, (seee.qg.[Joa75 Chapter 18]):

X "X #
brjk( ) myi = L% e itk ) Ammeim)Y, ™ &) wijm(r);(3.44)

ljm m

where  correspndsto the solid anglede ning the direction of k, and
and | are the nuclear and Coulomb phaseshifts respectively (see[Joa75
Sec.4.3)).

The momentum distribution of the relative motion betweenthe projectile
fragmerts after breakup then reads

dP, 1 : : y
gc (6B = g kO i M tow)if (3.45)
Mmom;
Inserting (3.44) into (3.45) gives
Poy,, ., _ 1 1 X X Mo - Mo
a <P = e, im Wi d3ne
19 9m°
#2 3
X X 0
(rmmegim)y, ™) 4 (19 min i m9Ye (05
m m?
(3.46)

where

agim = (1) 09T Dh ()] MO tow)i: (3.47)
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In order to obtain the parallel momertum distribution, the probability
(3.47) must be integrated over the momertum componerts perpendicular to
the trajectory:

d Pbu Z d Pbu

dk, (kb= 5 (ki Ddk-: (3.48)

Choosing the z axis of our coordinate systemin the direction of the inci-
dert beam, the parallel momertum ki correspndsto the z-componert k.
Eq. (3.48) expressedn cylindrical coordinates(k (ks ;' «;Kkg)) reads

g kab = d g Bk Bkodio: (3.49)

Since
Z 2 m, m|0 1 — m . m . .
Vi)Y' Cdd «=2 Y (0 (k3 0) mimg; (3.50)

inserting (3.46) into (3.49) gives

(3.51)

2
dP, 2 Z1 X 1
dl:(u(kk;b): m o . (Inmym, jj m)EaileomYlml( k;0) ko dks;
moem I
m; m
using
q
k= ki+Kk3 (3.52)
and
k>
k = arctan —: (3.53)

ki

As for the breakup crosssection, the parallel momertum distribution is
obtained by summingthe probability (3.49) over all possibletrajectories

d bu z 1 deu

i (k) = 2 k. (ki b)bdb (3.54)

3.4.3 First-order appro ximation

We have seenin Sec.2.3.2that, whenthe time-dependert potertial V (3.26)
is small, the perturbation theory enablesusto computea rst-order approx-
imation of the solution of the time-dependert Scredinger equation (2.29).
Usingthis theory, we canwork out the projection of the time-dependen wave
function (M) upon the unperturbed Hamiltonian eigenfunctionsde ned in
Sec.3.1.2. With the initial condition that the projectile is in its ground state
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nolojomo Of €NErgyE, at time tj, = 1 , the rst-order perturbation theory
givesus (seeSec.2.3.2)

o iE t=h
hoaim()i MODT = g jjo mmee =0 S
2 [
€ Ph im (NIV nolojom, (1 )i dtC
(3.55)
where x stands either for n in the caseof bound statesor for k in the case
of scattering states. In this expression,! = (E Eg)=h, whereE is the

energyof state | jmi; that isto say E; for bound statesand h?k2=2 for
scattering states.
This leadsto the following expressionfor the breakup probability (3.38):

dPy, 1 1
dE( ) hzkh2§0+1
X X . 1 il tO . . . 2
i €N aim(MIVAY nolojomo (r)idty*:
mo ljm 1

(3.56)
Inserting (3.55) in (3.40), we nd

1 1 xx %1 e -
J ) e “h anm(r)JV(tO)J nolojomo(r)ldt(]2

PO a1,
(3.57)

for the excitation probability.
The expressions(3.56) and (3.57) can easily be calculated under two
conditions (seeRef. [WA79]). The rst is that the interactions betweenthe
target and the two constituents of the projectile are supposedto be purely
Coulombic. The secondcondition is to approximate the classicaltrajectory
by a straight line. Both conditions are ful lled when consideringa large
impact parameter trajectory with high velocity. For large b, the e ects of
the nuclear part of V.t and Vst becomeindeed negligible. Moreover, the
curvature of the trajectory can be neglectedat su cien tly high energy(see
Sec.3.3). Furthermore, the interaction betweenthe target and the projectile
diminisheswhen increasingthe impact parameter, which legitimisesthe use
the rst-order perturbation theory.
The rst condition implies that the time-dependen potential V (3.26)
can be written as
Z.Z+1¢€ N ZiZ1€ ZpZ1€
4 oRer(t) 4 oRer(t) 4 oR(Y)

Whenr < R, this potential can be expandedinto multip olesas follows (see
e.g. Ref. [CDL73, pp 1055-1056]):

Zie X 4
V =
W=z, _ z+1°

()Y 90

V(t) = (3.58)

YA Rr(1)

RO T (3.59)
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wherethe e ective chargee is de ned by

e= e zer M7 (3.60)
Mp Mp
The solid angles and g indicate the direction in the projectile rest frame
of r and R respectively. The Y,™ functions are the usual sphericalharmonics
[CDL73, Appendix A-VI].
Inserting this expressioninto (3.56), and using the Wigner-Edkart theo-
rem [Edm57, Chapter 5] and its corollaries,we obtain

APy, .. 1 Zre X X (4)%
dE (E;b = hk2o+ 1 4 Ij (2 +1) . Q2 +1p

X
jh kY Okloljoij (R )2 19152 (3.61)
q:
for the breakup probability. In this expressionthe reducedmatrix elemert
reads

I +jo+ p q q
HIjKY OkKlgljoi = (4}34_7p2|+1' 2 +1 2g+1 2jo+1
L )

ol g1
000 lpjo (3.62)

where

jl jz j3 (3 63)
m; mo, Mms '

denotesthe Wigner 3- symbols, while
)

j 1 J 2 J 12
’ ’ 3.64
Ja3 J Ja2s (3.64)
correspndsto the 6 symbols (see[Edm57]). The radial integral reads
VA 1
Ruj = . Uxj ()T Ungiejo(r)dr; (3.65)
with x = k in this case,and the time integral is de ned as
21 YR
ar) = It R .
1) . € RO 1 dt: (3.66)

Becauseof the presenceof R *1(t) in the denominator of (3.66), the
importance of the multip olesdecreasesvith increasing . If we neglectall
the terms above = 1, the sumover in (3.61) reducesto its rst term
which correspndsto the E1 or electric-dipole transition probability.

When the classicaltrajectory is supposedto be a straight line, the in-
tegrals over time (3.66) in the E1 term can be performed analytically (see
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Appendix A). This enablesus to calculate the breakup probability at the
rst-order perturbation theory for E1 transitions

dP 4 12 1 eZre 2N

K o(OP + [K1(0P

(E 2 9rﬁkF2j0+ 1 4
2j + L)jh1jKkY DKol joij 2(Ryij1)? (3.67)
I
wherex = ! b=y, and K, and K, are modi ed Besselfunctions [AS7Q pp

374-379].In this expressionthe only factor that remainsunewaluated is the
radial integral Ry;; which dependson the choice of the Vi potertial (3.5).
Therefore,it hasto be calculatedfor eat potertial.

In the sameway, we can calculatethe excitation probability (3.57) at the
rst-order perturbation approximation for E 1 transitions P 5 J The expres-
sion of this probability is very similar to that of the breakup probability. P/
is indeed given by the right hand side of (3.67) divided by -, and where
Ruij1 is replacedby R 1.

In order to obtain an approximation of the breakup crosssectionat the
rst order, we needto integrate the breakup probability (3.67) over the im-
pact parameters(see(3.39)). In this casethis integral can be performed
analytically using [AS7Q relation 9.6.28]. The rst-order approximation of
the breakup crosssectionthen reads

d lIJEu:L - Zl deu
I Gl
8 1 1 eZre ?
= 9fﬁk$2jo+ 1 Alf TO Xmin K 0(Xmin ) K 1(Xmin)
(2 + D)ihilj kY Pklol j oij *(Riaj 1) (3.68)

lj
whereXmin = ! byin=Vv correspndsto the impact parametercuto b, used
to simulate the nuclear interaction betweenthe projectile and the target in
the black disk appraximation (seeSec.3.2).

When the secondterm of the sumover is not negligiblein (3.61), it has
to be takenit into accoun. It correspndsto the E2 or electric-quadrupole
transition. In this casetoo the calculation can be performed analytically.
Following the samesteme,we obtain the breakup probability at rst-order
perturbation appraximation for E 2 transitions (seeAppendix A for the cal-

culation of the 1J):
|

deu _ 14 1 716
(ED = 25h*k V6 2jo+ 1 4
4 1
[Ko(X)]* + §,[K 1()]? + §[K 2(X)1?

X
(2 + D1 KY @Kol joij [Ryj2%  (3.69)
lj

2

As for the E 1 transitions, the E 2 excitation probability PnIJ is obtained by
dividing the expressionof the breakup probability -, and replacing Ryj;»
by Rnij2.
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As mertioned in the beginningof this section,theseresults are valid only
for large impact parameters. Therefore, they cannot be usedto calculate
accurate breakup probabilities. Newerthelessthey provide us with a good
test of the corvergenceof our algorithm. Our results should indeed con-
vergeto the probabilities calculatedherewhenthe rst-order appraximation
is legitimate. It should also be noted that P£2=dE includesa v ° factor
while dPE!=dE exhibits a v # factor. This meansthat, at high velocities,
the quadrupole transitions, and hencethe higher-order multip oles, become
negligiblewhencomparedwith the dipole ones. Therefore,we shouldobsene
that at high velocities and high impact parameters,the breakup probabilities
computedwith our model corvergetowards dPE !=dE.

3.5 Symmetry of the Hamiltonian

In order to diminish the number of operationsrequiredin the ewlution algo-
rithm, it isimportant to take the symmetriesof the probleminto accourt. In
this section,we shawv that the time-dependent Hamiltonian H (3.1) obtained
from the semiclassicabpproximation exhibits a re ection symmetry in the
plane of the trajectory (seealso Ref. [AW75, Chapter I1]). As will be seen
below, this enablesus to divide the computational time by approximately
two.

We have seenearlier that the total Hamiltonian H is the sum of the
projectile Hamiltonian Hg (3.4) and the projectile-target interaction V (3.26).
The former compriseskinetic and potential terms which are invariant by
rotation and parity-re ection. Therefore,the spatial symmetriesof the total
Hamiltonian H can be deducedfrom thoseof V.

From expression(3.26), we can seethat V dependsonly on the relative
distancesbetweenthe projectile constituents and the target. Thesedistances
are invariant under a re ection in the trajectory plane. This implies that V
exhibits a re ection symmetry in that plane.

This operation can be factorisedinto the composition of the parity re ec-
tion in the origin and arotation of anangleof aroundthe axisperpendicular
to the trajectory plan. Sincethe Hamiltonian Hq is invariant under parity
and rotation transformations, it is alsoinvariant for this re ection. Therefore
this symmetry is valid for the total Hamiltonian H.

With the coordinate systemde ned in the previoussection,the re ection
operator, which we denoteby Sy, can be decompsedinto

S, = R(ly; ) ; (3.70)

where isthe operator of parity re ection in the origin [CDL73, Appendix F11],
and

R(1,; )=¢€ ¥ (3.71)

is the rotation operator of anangleof aroundthey axis[Edm57,Chapter4].
As both R(1y; ) and arelinear and unitary, the re ection operator is also
linear and unitary.



50 CHAPTER 3. MODEL DESCRIPTION

From the de nition (3.70), we seethat the re ection operator acts only
on the spin-angularspace.lts e ect on the jljmi vector statesis:

Silimi = R(ly; ) jljmi
( 1'¢ »jljmi
(1" dhyon(ilimd

mo

= ( DM mi: (3.72)

In order to establish this expression,we have used properties of rotation
matrices which can be found in [Edm57, Chapter 4].

From the precedingremarks, we know that in this referenceframe, the
total Hamiltonian H is invariant under S;:

SH(1)S! = H(t): (3.73)

In order to infer the consequencesf this symmetry on the wave function,
we consider the wave function (™) the solution of the time-dependert
Sdiredinger equation

inQ Mo)(rst) = H(t) M(r;t); (3.74)
@
with the initial condition
(mO)(r ;tin) = no|ojomo(r); (375)
Its partial-wave expansionreads

X
Moy =r 2" N 0h jljmi: (3.76)
ljm

Applying the re ection operator S, on both sidesof Eq. (3.74) givesus

ihgsy MY = SHOSS, MO Y; (3.77)

wherewe have usedthe fact that S, is unitary and that it doesnot dependon
time. Taking (3.73) into accoun shawsthat S, (Mo)(t) is alsothe solution
of the time-dependent Sdredingerequation (3.74) with the initial condition

Sy (mO)(r;tin) = Sy noloj_omo(r)
= ( 1)|o+Jo+mo Nolojo mo(r); (378)

wherewe have used(3.72) Using the fact that S, is linear, and taking (3.76)
and (3.72) into accoun, we can write its partial-wave expansionas
X
s, (M(r;t) P IWnnh s,jljmi
ljm
1X [+j+m (Mo) /.. i ‘.
r (1 im (OL I miz (3.79)

ljm

|
-
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Let us considernow the wave function ( ™o the solution of the time-
dependent Schreodinger equation (3.74) with the initial condition

( mO)(r ;tin) = n0|oj0 mo(r) (380)
Its partial-wave expansioncan be written as

X
(magrsy=r * {Tmoh il mi (3.81)
ljm
Sinceboth ( M) andS, (M) arethe solution of the sametime-dependert
Sdiredingerequation(3.74) with the sameinitial condition but for a constart
phase,we have

(mo(r;t) = ( 1)eriormog  (Mo)(r;¢): (3.82)
From partial-wave expansions(3.79) and (3.81), we deducethat

(rit) = ( yoriormoririzm (Mo)(poqy. (3.83)

This meansthat the wave function obtained from the initial bound state
with spin projection mg can easily be obtained from that computed with
an initial spin projection equalto my. Therefore, the computational time
can be divided by approximately two by computing the ewlution for initial
bound stateswith either negative or positive spin projections only.
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Chapter 4

Solving the time-dep endent
Schreodinger equation

In this chapter, we describe more preciselythe algorithm we useto solve the
time-dependent Sdredinger equation (2.29) appearing in the semiclassical
approximation Sec.2.3. The main idea of this algorithm is to calculate the
time ewlution of the projectile wave function step by step from an initial
time tj, up to a nal time tgy.

In our case,the Hamiltonian H divides into two parts (seeSec.2.3):

H(t) = Ho+ V(1); (4.2)

where the spatial dependenceis understood. Hg (3.4) is the Hamiltonian
describingthe projectile internal structure, which doesnot depend on time.
V (3.26) is a time-dependen potential modelling the perturbation of this
structure due to the interaction with the target. In our algorithm, these
operators, as well as the halo-nucleuswave function, are expandedonto a
three-dimensionalsphericalmesh. This inducesa diagonal represetation of
V. A mereangular basischangeleadsto a simple represemation of Hy.

This enablesus to treat separatelythe e ects of both operators upon
the the projectile wave function. This technique, introducedin Sec.2.3.3,is
inspired by the algorithm deweloped by Melezhik [Mel97].

This chapter is divided into three sections. In the rst one, we descrike
the angular treatment of the wave function. The secondone examinesthe
discretisation of the radial variable. The details of the ewlution calculation
are explainedin the third sectionof this chapter.

4.1 Angular expansion

As mertioned above, the cornerstoneof our algorithm is to dewelop the wave
function onto a three-dimensionalsphericalmesh. It is composedof an an-
gular meshand a radial mesh. The angular meshis related to two angular
function bases. This mesh, as well as the related functions, have beenin-
troducedby Melezhikin Ref. [Mel97] and fully dewelopedin Ref. [CBMO03b].
The coexistenceof two angular basesenablesus to treat eat term of the
semiclassicaHamiltonian (4.1) in its simplestexpression.

53
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In the rst part of this section,we give a precisedescriptionof the angular
meshand the angular basesit is related to. In the secondpart, we dewelop
the angular expansionof the wave function and the expressionof the matrix
elemens of Hy and V. The third part looks at numerical aspects of this
method.

4.1.1 Lagrange mesh

With the aim of constructing the angular meshwe usein our method, let us
rst introducethe theory of the Lagrangemesheson the unit sphere.

A Lagrangemesh[BH86] consistsof N points ;. At ead point of the
mesha weight ; is asseiated so as to de ne a Gaussquadrature. This
guadrature enablesus to appraximate integrals over the unit sphereby

Z X
, o() d k9( K): (4.2)

k=1

This meshis related to a Lagrange basis which consistsof a set of N
functions f; which satisfy the following condition:

1
fi( )= P=: (4.3)
That is to say that they vanish at all points of the meshbut one. From

this condition, we seethat they are orthonormal at the Gaussapproximation
(4.2):

Z R
. fi () f;() d KFi C 5 ( w)
k=1
X 1 1
= kP= ik &= j«k
k=1 I i

= i . (44)

The main interest of those functions is that the potertial matrix is diag-
onal at the Gaussapproximation

z N
, OV () d i COVE Gt ()
k=1
= V(r; i;t) (4.5)

In order to construct this basis,let us start from a setof N functions 'Y
orthonormal at the Gaussapproximation

Z X
4Y()Y°()d kY ()Y o k)
k=1

= 0. (46)
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From this relation, we seethat the matrix 8 de ned by
q_
S = WY () (4.7)
is unitary. This meansthat we also have
X q— q—
Y (i) gY()= (4.8)

=1

Using this, we can construct the Lagrangefunctions from the Y functions:

X g —
fi() = Y ()Y () (4.9)
=1
From (4.8) and (4.6), we seethat this expressionsatis es both (4.3) and
(4.4).

In this dewelopmen, the functionsY andf; areassumedo be orthonor-
mal only at the Gaussappraximation. The Lagrange functions we have
obtainedin this way are in fact not exactly orthonormal. However, this basis
hasprovento give accurateresults [MB99]. It should be noted that another
angular basishas beenconstructed by Vincke, Malegat and Baye [VMB93].
The functions of this basis are exactly orthonormal. In the future, it will
be interesting to ascertainwhether or not this other basiscan improve the
accuracyof the scheme.

4.1.2 Angular mesh

In order to obtain a Gaussquadrature on the unit sphere,we considertwo
di erent quadratures: one over the azimuthal angle’ and one over the co-
latitude

The former is a Gauss-Burier quadrature. Its meshcomprisesN: angles

"i. (J+ = L:::;N ) equally spacedover [0; 2 ]
= (@ 1N (4.10)

The asseiated weights are
j(:) =2 =N : (4.11)

This quadrature rule givesan exact evaluation of integralsof €" with jnj <
N :
Zy ) S
ém d = i ginj< N
0 i =1

(4.12)

This can be easily demonstratedby inserting (4.10) and (4.11) in the right-
hand side of (4.12), and comparing the value of the sum with that of the
integral:

e d =2 .o (4.13)
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We usethe Gauss-Legendreuadrature for integralsover [AS70Q, Chap-
ter 25]. The related meshconsistsof N angles ; (j = (N 1)=2;:::;
(N 1)=2) given by the zerosof Legendrepolynomial Py [AS70 Chap-
ter 22]:

Pn (cosj ) =0 (4.14)

SinceLegendrepolynomials are either even or odd, the ; exhibit the prop-
erty

cCosj = cCcOS . (4.15)
J J
The Gauss-Legendraveights are
$)= 24sin ; P§ (cos j )2 (4.16)

This quadrature rule givesexact valuesfor integrals of polynomialsin cos
of order lessor equalto 2N 1 [AS7Q Chapter 25]:

Z, (Ny 1)=2
pn(cos )dcos = j()pn(cosj) 8n 2N 1 (4.17)
! = (N D=2

wherep, is a polynomial of degreen.
The resulting two-dimensionalmeshis then composedof the N = N N.
points

i=Ciat) (4.18)

wherej  (j ;j- ). The asswiated weights are

— ) ).

4.1.3 Angular bases

As seenin Sec.4.1.1,the construction of Lagrangefunctions requiresa set
of N functions Y orthonormal at the Gaussapproximation. Becausewe are
looking for a basisin which the matrix of the unperturbed Hamiltonian Hy
is diagonal,we rst considerthe sphericalharmonicsY,™ (seee.g. [CDL73,
Appendix A-VI]):

Y,™() = NimP/™(cos )em" (4.20)

with | Oandjm;j I. In this expressionN,y,, is a normalisation factor

V
L2+ 10 jmij)

— (my+jmj)
Nim, = ( 1) & 0T impr (4.21)
and P/™" is the asseiated Legendrefunction
-, dm
P™(x)= (1 x})™Z_—Pi(x) (4.22)

dxm
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where P, is the Legendrepolynomial of order I.
With normalization factor (4.21), the sphericalharmonicsare orthonor-

mal
z

LY O Y0 d = e mme (4.23)

From the preceding relations, we seethat the orthogonality property
(4.23) is exact at the Gaussapproximation for jm; mg < N. and |+ I°
2N 1. The rst condition can be easily derived from (4.20) and (4.12).
The integral over' appearingin (4.23)is thus equalto zerounlessm;°= m,.
In that case,the cos dependenceof the integrand of (4.23) is a polynomial
of degreel + 1% This, using Eq. (4.17), justi es the secondcondition.

From those conditions, we seethat all spherical harmonics Y,"" with
jm;j < N. =2 and| < N are orthonormal at the Gaussappraoximation.

As m; is an integer, we consideronly odd N. . Choosingan odd N. or
the correspnding even value N + 1 would indeed lead to the sameset of
sphericalharmonicsfor which the Gaussquadrature is exact.

In a complete set of spherical harmonics, all possibleY,™ are included
up to a certain value of I. This maximal value is thus larger than any of
the possiblem,. Therefore, in order to obtain the largest complete set of
spherical harmonicsthat are orthonormal at the Gaussappraximation, we
considerN N. =2.

This angular meshand the asswiated Gaussquadrature lead then to a
setof N N. (N2 1)=4 sphericalharmonicswhich are orthonormal at the
Gaussappraximation. Therefore, those functions are chosento be part of
the rst angular basis:

.. N
Y =Y™ 8l<N;jmj< - (4.24)
where (I; my).
In order to obtain a basisof N functions, we completethis set of exact
sphericalharmonicsby modi ed onesin the following way:

Y =¢™ 8jmj < N7 N | < jmj+ N (4.25)

where (I;m;). We chooseto keepjm;j < N. =2 sothat the orthogonality
property (4.23) is still satis ed by the factors dependingon' at the Gauss
approximation. The modi ed sphericalharmonicsthen read

2™M() = Nim B (cos )& : (4.26)

Wherelf\hmI are normalisation factors calculatedat the Gaussappraximation,
and P'™ are the asseiated Legendrefunctions (4.22) modi ed sothat the
Y are orthogonal at the Gaussapproximation. The modi cation consists
in orthogonalisingthe assaiated Legendrefunctions with a Gram-Sdimidt
algorithm using the Gauss-Legendreuadrature as a scalar product.

We seefrom (4.17) that the rst modi cation occursfor | = N where
the normalisation factor Ny, diers from (4.21). Forl = N + 1, 8™/ hasto
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N + N 3 r r
2
1 r r r r
N 1 r r r r r r
N 1 4+ r r r r r r r
1 r r r r r r r
N-+1 | r r r r r r r
2
N1 r r r r r r r
2
1 r r r r r
1 4 r r r
0 + r
: : | : | | |
N 1 N 1
4 - m
5 1 0 1 > |

Figure 4.1: Schematic represemation of the Y basis: ead dot correspnds
to a basisstate. Up to | = (N.  1)=2 (dotted line), all Y, are included.
Below the dashedline, all basisfunctions are Y,"". Above this line, modi ed
sphericalharmonicsare used.

be orthogonalisedto P/™) and renormalised. It should be noted that /™"

and lﬁljml'j are already orthogonal at the Gaussapproximation becausethey

dier in parity. Forl = N + 2, Iﬁljmlj hasto be orthogonalisedto Pljm‘{j and to
the already modi ed B/™)’. It needsalsoto be renormalised. This procedure
must be done at ead value of m, for all N | < jmj+ N .

This leadsto a basisof N functionsY orthonormal at the Gaussapprox-
imation. Fig. 4.1represets this basis. Eadch dot correspndsto a basisstate.
We seethat upto | = (N 1)=2 (i.e. belowv the dotted line), all possible
sphericalharmonicsare included. For larger |, jmj larger than (N.  1)=2
are missing. For | N (i.e. above the dashedline), modied spherical
harmonicsare used: for | = N , only the normalisation factor is modi ed;
for larger I, the functions Y dier from sphericalharmonics. The Lagrange
basisis derived from thesefunctions using (4.9).
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4.1.4 Wave-function expansions in spin-angular space

Introducing the spin dependencethrough spinors, the wave function expan-
sionin the spherical-harmonicbasisfY g reads

(r;=rt * M )Y () jimyi (4.27)

m= 1 =1

wherel and m, arethe spin of the fragmert and its projection. We remind
the readerthat in our casethe former is assumedto be xed, and that the
spin of the coreis neglected. In this basis,the wave function is represeted
by the vector whoseelemerns are
z
M=o () Amj(osrt)id (4.28)
4

The wave function can also be expandedin the angular Lagrange-basis
ffig:

XN a— o
(r;p=r? i (nOfi) myi: (4.29)
m= 1i=1
Using (4.3), we seethat the coe cients ™ correspnd to the value of the
function at the meshpoints:
Mty =rhmij (i (4.30)

The vector represeting the wave function in the Lagrangebasisis com-
posedof elemens

My = ™ () (4.31)
Changing basesis performed using matrix 8 (4.7):
(r;t)=8 (r;t) (4.32)
and by unitarity of 8,
r;t)=9 (r1): (4.33)

When expressedn the spherical-harmonicbasis, the projectile Hamilto-
nian matrix M, is diagonalwith respect to both | and the projection of the
total angular momertum m = m; + m,. If the core-fragmem potertial (3.5)
includes a spin-orbit coupling term, Hq is not diagonal with respect to the
orbital-momentum and spin projections m; and m, .

M) mo _( hz..@ |(|+1)#
HO 0 (I‘)— 2— @ r2

M m L mAmPivy (1) mesmmoemo e (4.34)

)
+ Vo(r) mm? 0
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where is the reduced mass of the two-body system, and kets jlm;I m,i
corresppnd to

h jlmiimi = Y,™() jimi: (4.35)

In order to derive the matrix elemens (4.34), we assumethat functions
Y exhibit the same properties as exact spherical harmonics. This means
that matrix elemens hY jL?jY o areapproximated by I(I+ 1) .. The same
assumptionis made when calculating the matrix elemerts of L 1. This
appraximation concernsonly the highest| valuesbecauseit is exact for all
Y uptol =N 1. The error due to this appraximation can therefore be
consideredas negligibleif N is chosensu cien tly high.

The matrix Ay is thus not exactly diagonal due to the spin dependence
of the wave function. Howewer, there are few non-diagonalelemerts, and an
adequatestorage of the wave-function componerts leadsto a band matrix
with a small bandwidth (seeSec.4.2.2and Appendix B).

The time-dependent potertial V is expressedn the Lagrangebasis. In
this basis, the matrix of this potertial is exactly diagonal, as explainedin
Sec.4.1.1:

m; m?

io (K V(i) o mmo: (4.36)

Moreover, we seethat the elemeits are merely the valuesof the potential at
the meshpoints. The matrix ¥ is thereforevery easyto compute.

We can now expand the time-dependert wave function in two angular
bases.When expressedn the rst one,which comprisesspherical-harmonic-
like functions, the projectile Hamiltonian matrix Hq is diagonal but for its
spin dependence. The secondbasisis a set of Lagrangefunctions in which
the projectile-target interaction matrix ¥ is fully diagonal.

4.1.5 Numerical aspects

In order to determinethe number of angular functions neededin the ewlu-
tion calculation, we study the corvergenceof the schemewith regardto the
valuesof N and N . As we are mainly concernedby the projectile breakup,
the cornvergenceis analysedthrough the values of the breakup probability
dP,,=dE (3.38) and crosssectiond ,=dE (3.39).

As descriked in Sec.3.4,thesevaluesare obtained by projecting the nal
wave function ( r;to) onto the eigenstatesof the projectile Hamiltonian
Ho of positive energy jm(r) (3.20). The set of those distorted wavesis
chosenso asto compriseall partial wavesup to a certain value | of the
orbital momertum (i.e. we considerall valuesof | lower or equal to |yax
and all valuesof the total momerium j obtained by coupling all the Is to
the intrinsic spin of the projectile I, and of courseall possibleprojections
m of the total momertum). Therefore, we consideronly the valuesof | for
which all possiblesphericalharmonicsareincludedin our angular basis. This
meansthat |ax hasto be chosenlower or equalto (N.  1)=2. In practice,
we considerdistorted waveswith | up to this maximal value.
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From the above statemert, we seethat the wave-function componerts
with | largerthan (N.  1)=2 are not taken into accoun in the calculation
of the breakup crosssection. Therefore the corvergenceof the schemewill
be achieved only if thesecomponerts are very weakly populated.

In previous studies [MB99, CBMO03b], N and N. were chosenequal to
eadh other. With this choice, a great number of componerts of the wave
function corresnd to | larger than (N.  1)=2. Sincethese componerts
do not cortribute directly to the breakup crosssection,they are of little use
in the ewlution calculation. Their number should therefore be reducedas
much aspossible.Numericaltests have shavn that in all caseqsmall or large
impact parameter,including or not nuclearpotentials in the projectile-target
interaction, etc.) choosingthe lowestvalue of N (i.e. (N. + 1)=2) doesnot
causethe corvergenceof the schemeto deteriorate. Therefore, we consider
that N = (N. + 1)=2 can be chosenfor practical calculations. This leaves
only one free parameter. This parameter hasto be adjusted to ensurethe
convergenceof the scheme.

We havefoundthat avalueof N. = 7 (with N = 4) su ces whenthe rst
multip ole of the projectile-target potertial is dominart. This is the casefor
a purely Coulombic interaction betweentarget and projectile. When other
multip oles becomesigni cant, larger valuesof N. have to be chosen. For
example,a value of N. = 11 (with N = 6) is usually neededwhen the nu-
clearinteraction betweenthe projectile and the target is taken into accour.
Fortunately, the number of partial wavesthat are to be consideredfor the
breakup crosssectioncalculation decreasest higherimpact parameter. This
is due to the fact that at higher impact parameterthe projectile-target po-
tential is wealer. Our tests have shovn that avalueof N. = 5(with N = 3)
can be usedin most casedor b larger that 100fm.

4.2 Radial discretisation

After describingthe angular expansionof the wave function, we presett in
this sectionthe discretisation of the radial variable. We rst introduce the
conceptof quasiuniformmeshand explain the reasonfor its usein this study.
Secondly we analysethe wave-function represemation on sucd a meshand
the implications it has on the structure of the Hamiltonian matrices. The
last part of this sectionexaminesnumerical aspects of this discretisation.

4.2.1 Quasiuniform mesh

As already explained, at initial time, the projectile is assumedto be in its
groundstate. The correspndingwave function is signi cant at smalldistance
and decreaseexponertially at large distance. The radial grid must then
cortain enough points near the origin to allow a good description of this
initial state.

Through the interaction with the target, the projectile wave function de-
velopsa long-rangetail which ewlvesrather quickly towards large distance
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(seeSecs4.2.3,5.2.1and 6.2.1). It correspndsmainly to the breakup com-
ponert. Becausethis tail is a slowly varying function of r, its description
requireslesspoints than that of the bound states.

In order to take both aspectsinto accoun, Melezhik [Mel97] proposedto
make useof a quasiuniform radial meshwith small stepsnearthe origin and
larger onesat large distances.In this work, we follow Melezhik's suggestion.
Howewer, we use another meshsincethe one he proposedturned out to be
not su cien tly accurateat large distances.

In order to obtain sucd a mesh, we introduce a variable x 2 [0; 1] sut
that

r(x) = rn, 9(x)=g(1) (4.37)

wherery, is the upper bound of the radial interval we consider,and g is a
C?([0; 1]) monotonousfunction sud that g(0) = O.

The quasiuniform grid is obtained by mapping a uniform mesh over x
with constart steph = 1=N, onto the radial interval [0;ry, ]. Its points rj,
are calculatedfrom the equally-spacedoints of the uniform meshx;, = j;h

M, = r(x,): (4.38)

In our study, the functions we are dealing with vanish at r = 0 (see
Egs. (4.28) and (4.30)). Moreover, sincethey are square integrable, they
vanishforr ! 1 . In our grid calculation using a nite radial interval, this
is approximated by assumingthe functions to vanish at the last point of the
mesh. This reads

f(0)= 0= f(ry,): (4.39)

On this mesh,the radial integrals are therefore approximated by
Z, z

f(r)dr = é(“‘l') 01 gU)f (r(x))dx

l\b( 1
a%x;, )f (rj,): (4.40)

This relation is usedto calculate the scalarproduct of two radial functions.

4.2.2 Radial discretisation of the wave function

In this appraximation, the componerts of the wave function in the angular
bases ™ (4.28) and "' (4.31), which depend on r, are represeted by
vectorswhoseelemerts are the valuesof thosefunctions at meshpoints (see
Appendix B).

As usual in grid calculations, the potertial terms of Fy (4.34) and ¥
(4.36) arerepreserted by diagonalmatricescomposedof their valuesat mesh
points. Thereforewe seethat the matrix ¥ of the time-dependen potential
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is fully diagonalin both its angular and radial represetations. The radial
discretisation of matrix elemerts (4.36) reads

0
() VT 60 e mmo: (4.41)
This matrix can therefore be easily stored in a one-dimensionarray (see
Appendix B).
Using (4.37), the second-ordedi erential operator appearingin Hg (4.34)
reads

" #o! #
? g "t ® gt d
drz g, gqx)  dx2  gqx) dx

(4.42)

where g° and g®are respectively the rst and secondderivativesof g. The
di erentiation operators over x can be discretisedwith the (2N4 + 1)-point
nite-di erence formulaedewelopedin AppendixC. The rst-order derivative
reads

d X
i h ! P (X, 44); (4.43)
Xjr k= Ng
with ¢§” = 0 and, for k 6 0,
N2
= ( 1yt Ro) (4.44)

K(Ng K)!(Ng+ K’

)

We have then c(l)k = ¢ . The secondderivative is given by

!
d’f

Wd
e h 2 A (X5, 41); (4.45)

Xjy k= Ny
with, for k 6 0O,
d? = 2dP=k: (4.46)

Here we have c(z)k = q((z). Whenk = 0,
W
D= 27 j = (4.47)

jr=1

The second-ordederivative overr (4.42) of componerts of the wave function
expressedn the spherical-harmonicbasiscan then be approximated by
|

g2 mi’ W
ar drie ™ (rie); (4.48)
fjr j’=0

whered®@ is the matrix whoseelemetns are

8 h i5h i

e I ) g°9x,) A1) 0 .

d? = Fedego 62 0o hox S i v Jed Naj
rir 0

; (4.49)
otherwise.
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From Eq. (4.49), we seethat the radial discretisation of (4.42) leadsto a
band matrix of (2N4+ 1) bandwidth. This meansthat the band structure of
the spin-angularrepresemation of Hg is enlarged. Taking (4.48) into accoun,
the radial discretisation of matrix elemens (4.34) reads

( 5" )
0 +
AISETE 2_ d7s I(lr.z D+ Velr) e mm¢ 0
Ir
+hmm L HImAmMPiVL () Joe mem mesmo ne: (4.50)
It should be noted that the matrix M, obtained after radial discretisation
remainsquite sparseand easyto handle(seeSec.4.3.4). A suitable storageof
its componerts indeedleadsto a band matrix with a rather small bandwidth
(seeAppendix B).

When using nite-di erence approximation of di erential operators, we
are usually facedwith a problem at the boundary of the discretisation-mesh.
The use of formulae (4.43) and (4.45), for example, at the initial and nal
points would require valuesof the function outside the mesh. With the aim
of solving this technical problem, we have consideredse\eral approximations.
The description of thoseboundary approximations is summarisedin the rst
sectionof Appendix D.

It shouldbe noted that becauseof the factorsdependingon x;, in formula
(4.49) and of the asymmetry of coe cien ts c(kl), the matrix Mg is asymmetric.
This meansthat our represemation of the hermitian operator Hg is not her-
mitian. Howewer, we have shovn (seeAppendix D) that this represemation
is appraximately hermitian. This meansthat the non-hermiticity diminishes
when the number of points of the radial meshis increased. Therefore, if a
su cien tly accuratemeshis used,the asymmetry of H, becomesegligible.

4.2.3 Numerical aspects
Choice of the point distribution

We considertwo kind of function de ning the quasiuniform mesh. The rst
onewasusedby Melezhik et al. in previousworks [Mel97, MB99, MBO1]. It
reads

a(x) = e* L (4.51)

Sinceah 1, the step exponertially increasedrom about ry, ahexp( a) to
about ry, ah.
We also considerthe function we introducedin [CBMO3b]:

coshB(x  Xo)].

%(x) = ax+ In cosh@xo)

(4.52)

Both functions are monotonic with monotonic derivatives and vanish at 0.
The rst onehasthe drawbad that the gap betweensuccessig points always
increasesand becomedoo largenearry, for the optimal choiceof parameter
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a. Function g, has beendevisedto switch progressiely from a small step
to a slowly varying larger step. The parameter xo cortrols the location of
the region along which the transition occurs. For axg > 1, the stepis about
rn, h(L Xo) texp( 2axp) for smallx and about ry, h(1  xo) ? for largex.

103——-|- -I | 1 1 | 1 1 L 1 1 L 1 1
10 2 101 1 10 100

ri, (fm)

Figure 4.2: Radial step as a function of r; . Four di erent meshesare rep-
reseted (N, = 1000,ry, = 800fm): g, distribution with a = 8 (dashed
line), g, distribution with a = 3 (dotted line), g, distribution with a= 5and
Xo = 0:6 (full line) and g, distribution with a= 5 and xo, = 0:8 (dash-dotted
line).

In Fig. 4.2,the stepr;, r;, 1 betweentwo successig points of the radial
grid is represeted as a function of r;, for both kinds of distribution g; and
g.. Distributions g; and g, exhibit the same behaviour for small r: the
initially small step increasesand the larger the parameter a the faster the
increase.But although the g; step cortinuesto rise steadily for larger, the
0. step progressiely tendsto a plateau. In order to illustrate the in uence
of the distribution on the ewlution of the wave padet, Fig. 4.3 displays the
modulus of the s1=2 1=2 componert of the nal wave function obtained by
the ewlution algorithm. It correspndsto the projection of the wave padket
onjljmi forl = 0,j = 1=2, and m = 1=2. The calculation is performed
in the caseof a 'Be projectile on a ?%Pb target with a relative velocity
v = 0:37c and at an impact parameterb= 25fm (seeChapter 5 for details of
that collision). It is performedfor all the mesh-mint distributions illustrated
in Fig. 4.2.

The distribution shovn as a dashedline in Fig. 4.2 correspnds to the
meshusedin Refs.[MB99, MBO01], i.e., a g; distribution with a = 8. The
small step nearr = 0 allows a good description of the bound states of the
two-body systembut the stepsnearry, becometoo large (> 6 fm), leading
to alack of precisionin the descriptionof the breakup componert of the wave
function. This explainsthe suddenfall of the correspnding wave function
nearr = 500fm in Fig. 4.3.
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Figure 4.3: Modulus of the s1=2  1=2 componert of the !Be wave function
after ewlution at b= 25fm and projectile energy72 MeV/n ucleon. Compu-
tations are doneusingthe distributions depictedin Fig. 4.2. Note the change
of abscissascaleat r = 4 fm.

The samecalculation is performedwith a parametera = 3 to avoid too
large a step at large distances(dotted line). The drop in the wave function
modulus disappearsand the wave function extendssmaoothly till the end of
the radial grid but the radial stepis larger than 0.1fm nearr = 0 leadingto
a poor description of the bound states. This can be seenin Fig. 4.3 where
the short-range behaviour of the wave functions is represemed on a larger
scalethan for the rest of the radial interval.

The results obtained with a g, distribution with a= 5 and xo = 0:6 are
depictedasfull lines. This distribution allows a good description of the wave
function at both small and larger. A calculation usinga = 5 and xo = 0:8
(dash-dottedlines) illustrates the in uence of X, in the g, distribution. This
distribution exhibits a smaller step nearr = 0 than the previous one but
leadsto a larger gap between points at large distance. The correspnding
wave function is well described at short distancesbut exhibits a suddendrop
near 600fm dueto too large a stepnearry;, .

The intervals of acceptablevaluesof the parametersa and xo seemto be
relatively wide (i.e. a 2 [3;20] and xo 2 [0:3;0:7]). Inside theseintervals,
the choice of the parametersdoes not seemsigni cantly to inuence the
ewlution of the wave function. For the calculations below, we adopt a= 5
and xo = 0:6.

Num ber of points and extension of the grid

The choice of the other parametersof the radial meshis made as follows.
Becauseof the time ewlution processthe wave function, which is initially a
bound state of the halo nucleus,dewelopsa long-rangebreakup componert
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(seeFigs. 4.3,5.1,and 6.1). This tail ewlvesrather quickly towardslarger.
Therefore, the last point of the meshry, hasto be chosensoasto ensure
that the wave function doesnot read the boundary of the mesh. In most of
the casesyy, could be chosenequalto 800fm.

As for the number of angular functions, the number of radial-meshpoints
N, is chosenin order to keep enoughaccuracyon the values of the cross
section. We have found empirically that choosingry, =N, 1 fm ensures
that the ewlution calculation has corvergedwith regard to the radial dis-
cretisation. This ratio correspnds approximately to the mean radial step.
The fact that this value is related to the convergenceof the schemeis not
very surprising. It indeedcharacteriseghe point density and sothe accuracy
of the discretisation. Therefore,with a meshextendingup to ry, = 800fm,
we considerN, = 800 points for practical calculations.

4.3 Evolution Op erator

In this section,we descrike the ewlution algorithm we useto solwe the time-
dependent Schredinger equation.

After de ning the ewlution operator, we dewvelop a second-ordelpproxi-
mation of this operator. As already mertioned, the aim of this appraximation
Is to split the ewolution operator into factors depending either upon the pro-
jectile Hamiltonian Hq (3.4) or upon the time-dependert projectile-target
interaction V (3.26). This appraximation is then usedto obtain the ewlu-
tion algorithm. The last part of this sectionexaminesnumerical aspects of
this algorithm.

4.3.1 De nition

In quantum physics,the ewlution of a systemrepreseted by the wave func-
tion ( t) at time t is described by the time-dependen Sdredingerequation
(seee.qg. [CDL73, Chapter 111])

d
i (D=HM(Y (4.53)

whereH is the Hamiltonian of the system(for simplicity, the spatial depen-
denceof the wave function and the operatorsis understood).

This equationis linear and presenesthe norm of the wave function. The
time ewlution of a systeminitially in state ( tg) at time t, canthereforebe
described through the linear and unitary evolution operator U(t; tg) [CDL73,
Appendix F-I11]:

(1) = U(t to) ( to): (4.54)
The initial condition implies that

wherel is the identity operator.
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Inserting (4.54) in Eq. (4.53) leadsto
ih%U(t; to) = H(t)U(t; to): (4.56)

With condition (4.55), this equation completely de nes the ewlution oper-
ator U(t; tp). The calculation of the wave function ewlution (4.53) reduces
then to the calculation of the ewlution operator (4.56). This helps because
the solution of Eq. (4.56) is given by the Magnus expansion(seeRef. [Wil67,
Sec.8.1)).

In the Magnus expansion,the solution of Eq. (4.56) is expressedas the
exponertial of a seriesof operators':

U(t; to) = exp[ ( t; to)] (4.57)
where
(tty) = - W n(t; to): (4.58)
For n = 1, we have
z t

1(tito) = H(t)dH, (4.59)

and n = 2 gives

1 ZZo

o(t to) = 5. [H (t9; H (t°] dt®t® (4.60)

4.3.2 Second-order appro ximation

Sincethe exact expressionof the ewlution operator cannot be obtained in
our problem, we make use of an approximation. In this appraximation, the
time interval is divided into steps t, and the ewlution of the wave function
is computed step by step from the initial time tj, to the nal time toy. In
this section, we detail the second-orderapproximation (i.e. with a O( t%)
error) of the ewlution operator we usein our method.

We have seenin Sec.4.1 that the wave function can be expandedonto
two angular bases.The rst oneis composedof the spherical-harmonic-lile
functions Y . In this basisthe projectile Hamiltonian represemation Hg is
a band matrix with few o -diagonal elemeints. The secondbasisconsistsof
Lagrangefunctions f;. The matrix of the time-dependen potertial ¥ is fully
diagonal in this basis. Therefore, we are looking for an expressionof the
ewlution operator in which Hy and V are separated.

From (4.57), (4.59), and (4.60), we seethat the following expressionis a
second-orderappraximation of the ewlution operator:

. 4

Ult+ tt)= exp IH t "H(Od+ O( 1) (4.61)

1The solution of Eq. (4.56) canalsobe obtained by the Fer expansionwhich corresponds
to an innite product of exponenrtials of operators. We will not make use of the Fer
expansionhere, and refer the readerto Ref. [Wil67] for more information.
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Taking (4.1) into accourn gives
Ut+ t1)= exp th[H0+ W(D)] + O( t3) (4.62)

where
Z

t V (tYdt® (4.63)

W (t) = it

t
In order to divide the ewlution operator into parts that depend only on

either Hy or V, one can make use of the Baker-Camphell-Hausdor (BCH)
formula (see[Wil67, Sec.4] and [WM62)):

e =exp A+B+ %[A; B]+ %Z[A; [A: B]]
1 . . 1 . . . .
+1—2[[A, B];B]+ Z1[[[B,A],A],B]+ : (4.64)

This hasthe following relationsfor corollaries(seeRefs.[Chin97] and [BGCO03))
e"ePe =exp 2A+ B + E[[A; B];A]+ E[[A; B];B]+ O(°) ;(4.65)

and
( . )
e*ePe " =exp B+ ?A;B]+ E[A; [A;B]]+ O( % (4.66)

Using (4.65), the ewlution-operator appraximation reads
I .ot
Ut+ tt) = exp |%W(t) exp IWHO
exp iz—r:W(t) + O( t3): (4.67)

The integral appearing in the expressionof W (4.63) cannot usually be
performed analytically. In order to obtain a consistemn approximation, it
must be done using a second-orderformula like the midpoint rule. This
leadsto the ewlution operator factorisations

Lt
2h
Lt
2h

Ut+ tt) = exp V(t+ ?t) exp i—tHo

h

exp i V(t+ ?t) +O( 13: (4.68)

Using a Taylor expansionof V and corollary (4.66), this expressioncan
be rewritten as

.t .t
Uit+ tt) = exp |%V(t+ t t) exp IFHO

exp izr:V(t+ t) + O( t3): (4.69)
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4.3.3 Evolution algorithm

The ewlution of the wave function can therefore be computed by applying

iterativ ely the ewolution operator to the initial wave function. The structure

of the approximation (4.69) enablesusto groupthe last factor of the ewolution

operator at one step with the rst factor of the next one. After N; time

steps,the wave function is calculatedusingthe following algorithm (choosing
= 0):

. ot ot

( tny) exp |%V(tNt) exp I?HO
ot ot

exp |FV(tj) exp IWHO

N ot
exp IFV(M) exp IWHO

exp iz—r:V(to) ( to) (4.70)

wheret; = to+j t.

As expressedn (4.69), the error introduced at eat step of this scheme
is of the order of t3. This hasto be multiplied by the number of stepsN,,
which is proportional to t . The global error of this algorithm is therefore
in  t2.

Apart from the rst and last ones,the time stepsof algorithm (4.70) are
split in two substeps.In the rst onethe e ect of Hy on the wave function
is takeninto accourt:

(4 + —t) = exp i—tHO (t): (4.71)
2 h
This is performedin the spherical-harmonicbasisin which Hy is represered
by a band matrix (4.50).
In the secondhalf step, the intermediate wave function is modi ed by the
time-dependert potertial:

(tu)=exp V() (4+ ) (4.72)

For this substep, the wave function is expressedin the angular Lagrange
basisin which the matrix of the time-dependen potential V is fully diagonal
(4.41).

This algorithm then requiresa changeof basisat eat time substep. This
enablesus to solwe the time-dependen Sdiredinger equation (4.53) with-
out having to deal with coupledequationsasin the partial wave expansion
method (see Sec.2.3.3). It also allows a fair description of the projectile
nucleusunlike in the Cartesian meshtechnique. Moreover, the treatment of
the time-dependen potertial is rather simple sincethis method only requires
its valuesat meshpoints (see(4.41)).
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With the aim of improving the ewlution calculation, we have deweloped a
fourth-order appraximation of the ewolution operator [BGCO03]. Its expression
and the correspnding algorithm are described in Appendix E.

4.3.4 Appro ximation of exponential operators

In Secs4.1.4and 4.2.2,we have seenthat the useof both the Lagrangean-
gular basisand the quasiuniform radial grid leadsto a completely diagonal
represetation ¥ of the time-dependert potertial (4.41). The calculation of
the exponertials of operator V appearing in (4.70) is therefore straightfor-
ward and canbe performedexactly. In this basis,their matrix represetations
are diagonal. The resolution of Eq. (4.72) is thus both easyand fast:

(tjs1) = exp i#@(t,-) (t + ?t): (4.73)

In this expression, (t) is the vector represeting the wave function at time
t. It comprisesthe componerts of the wave function in the Lagrangebasis
(4.31) discretisedover the quasiuniformradial mesh.

The caseof the exponertials of the unperturbed Hamiltonian Hg is less
trivial. Indeed, we have seenin Secs.4.1.4and 4.2.2 that the spin depen-
denceof Hy (4.34) and the nite-di erence approximation of the di erential
operator (4.48) lead to a band-matrix represetation of Hq in the spherical-
harmonic basis(4.50).

Pade appro ximation

The problem of calculating the exponertial of Ho reducesthen to the calcu-
lation of the exponertial of its band matrix represemation Hy (4.50). Unfor-
tunately, the exponertial of a band matrix is no longera band matrix. This
can be a problem if, asis the casehere, the dimensionsof the matrix are
large. In order to presene the band structure of Hy as much as possible,we
make useof a Pade approximation [MVL78].

The (p;q) Pade appraoximation is de ned as follows

e” = Rpg(A)+ O( Prah) (4.74)
where
Rpg(A) = [Ngp( A)] *Nipg(A) (4.75)
with
Npg(A) = P* A DR, (4.76)

o P+ aip )
(4.77)

We know that the power of a band matrix exhibits a band structure with
a bandwidth increasingwith the exponert. It is therefore important for



72 CHAPTER 4. SOLVING THE TDSE

storagereasondo usediagonalappraximants (p = @). At agivenorderthese
are the approximations that usethe lowest powers of the matrix.

In order to dewelop a consistert algorithm, we have to choose approx-
imations of the sameorder as that of the ewlution operator. Taking the
precedingremark into accoun, we make useof the (1; 1) Pade approximant
for the second-ordemlgorithm (4.70). It reads

11 1
Ru(A)= 1 A 1+ A (4.78)

Using this appraximation, the exponertial of Hy appearingin (4.71) can
be appraximated by

1
exp iFtHo = 1+ iz—éﬂo 1 iz—rfﬂo +0O( t%: (479
This expressiommerely consistsof the product of two matrices. One of them
exhibits the sameband structure as M, while the other is the inverseof suc
a matrix. Sincethe inverseof a band matrix is no longer a band matrix,
this (1;1) approximant should not be computed explicitly. Newertheless,it
enablesus to rewrite the time substep(4.71) as

1+ iZ_r:HO (t; + 7t): 1 iz_r:HO (t;); (4.80)
where (t) is the vector represeting the wave function at time t in the
spherical-harmonicbasis. It comprisesthe componerts of the wave function
(4.28) discretisedover the quasiuniform radial mesh. Therefore Eq. (4.80)
correspndsto a set of linear equations.

This meansthat we do not needthe matrix of the Pade appraoximation
(4.79). Instead, we are looking for an economicalway of solving a set of
linear equationswith a band matrix.

LU decomp osition

The ideais to usea LU decomposition (seeRefs. [PFTV86, Sec.2.3] and
[Jen77 Chapter 4]) of the matrix we have to invert. In a LU decomposition,
a matrix A is factorisedinto the product of a lower triangular matrix L and
an upper triangular matrix U:

A=L U (4.81)

It can be shawvn that the LU decomposition of a band matrix has a band
structure with the samebandwidth. Its storageis thus economicalin com-
parisonwith that of the completeinversematrix.

Moreover the inversion of a LU decommsed matrix is straightforward
[PFTV86, Sec.2.3]. It is alsoeconomicalfrom a computational point of view
for it requires approximately the same number of operations as a simple
multiplication of a vector by a band matrix.
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This LU decompsition is the samethroughout the ertire calculationsince
Ho is not time-dependen. Thereforeit hasto be calculated only once,prior
to the ewlution calculation.

The way we perform the LU decomposition is similar to the Crout's al-
gorithm detailedin [PFTV86, Sec.2.3]. The major di erence with this algo-
rithm is that we do not proceedto pivoting. The matrix to be decompsed
is neither hermitian positive de nite nor diagonally dominart. We should
therefore make a pivot selection(see[Jen77 Sec.4.6]).

Howewer, proceedingto pivoting would strongly a ect the band structure
of the matriceswe are dealingwith. It shouldthereforebe avoidedif possible.
Moreover, the diagonal elemens of A, are larger than the o -diagonal ones
in module. This seemgo indicate that the pivot selectionis not necessaryln
order to ched the stability of the method, we verify beforeead calculation
that the product of the lower and upper triangular matricesis equalto the
initial one within acceptableaccuracy Up to now, the maximal error has
newer exceeded 0 *° of the correspnding elemen. Moreover, the error made
on elemers equalto zero has always beenlower than 10 '3, and is usually
of the order of 10 18, This is satisfactoryfor it is of the order of the roundo
error of our computer.

4.3.5 Unitarit y of the appro ximation

We have seenin Sec.4.3.1that the ewlution operator (4.54) is unitary. It
therefore presenesthe norm of the wave function. Doesour appraximation
exhibit the sameproperty?

The approximation of the ewlution operator (4.69) is factorised into a
product of exponertials of hermitian operators. Thereforeit should be uni-
tary. As previously mertioned, the exponertials of the time-dependert po-
tential aretreated exactly. Therefore,they areunitary and presenethe norm
of the wave function but for the roundo errors.

For numerical reasonsexplained above, the exponertial of Hy is approx-
imated by Pade approximant (4.78). If Hy were symmetric, this Pade ap-
proximation would be unitary. This would be the caseif we were using a
uniform radial grid, for example. But, as seenin Sec.4.2.2, we usea qua-
siuniform grid that leadsto an asymmetric matrix. The approximation of
the exponertial operator is therefore not unitary and the norm of the wave
function not presened.

Howewer, we have seenin Sec.4.2.2that A, becomesapproximately sym-
metric if the number of radial points N, is high enough. The samee ect is
obsened here: the norm of the wave function is approximately presened,
the higher N,, the better the norm conseration. We refer the reader to
Appendix D for a detailed study of this appraximate unitarit y.

4.3.6 Numerical aspects

This sectionexaminesthe numerical aspectsof the time-ewlution algorithm.
Firstly, we descrike the way we selectthe parametersof the time mesh(initial
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tin and nal to times, and time step t). Secondly we ched the accuracy
of the implemertation of our algorithm by testing its reversibility.

Time interv al and time step

The time-ewlution algorithm preserted hereenablesusto computethe wave
function at any time t starting from a given wave function at initial time tj,.
In the study of the Coulonmb breakup, the nucleusis assumedto be ini-
tially in its ground state, far away from the target. Therefore, t;, hasto
be chosensu cien tly negative sothat the projectile-target interaction is ini-
tially negligible (the time t = O correspndsto the projectile-target closest
approad). The calculation of the ewlution is performed step by step until
a nal time tyy. It hasto be su cien tly positive sothat the time-dependen
potertial can be consideredas negligible at the end of the calculation.

As for the numerical parametersof the angular and radial meshes(see
Secs4.1.5and 4.2.3),the time interval [ti,; tou] iS chosenwith respect to the
convergenceof the total breakup crosssection(3.39). We have found that a
time interval starting at t;, = 20h/MeV and endingat ty,; = 20h/MeV is
usually su cien t for the calculation of the breakup crosssection. According
to the sametests, a time step of t = 0.02 h/MeV is suitable for most of
the calculations.

The above mentioned valuesof t;, and ty,; are chosento ensurethe con-
vergenceof the total crosssection,i.e. integrated over all impact parameters.
Howewer, the corvergenceof the sthemewith regardto the time interval is
not the samefor all impact parameters. It is indeed slower for high impact
parameters. A wider time interval should therefore be chosenif accurate
results were neededfor one particular trajectory at high impact parameter.
In Appendix F, we analysethe error madeon the breakup probability (3.38)
due to the truncation of the time interval. We deducefrom that study a
rough estimate of the time interval neededto ensurethe convergenceof the
sthemefor distant trajectories.

Reversibilit y of the algorithm

Oneway of testing the accuracyof the implemertation of the time-ewolution
algorithm is to ched its reversibility. From its expression(4.70), we can
seethat the time-ewlution algorithm is exactly reversible. Therefore, any
correctimplemertation of this algorithm should be reversible as well.

We have performeda time-reversedcalculation in which the initial wave
function was the output function at time to, of a normal ewlution. The
initial time has beenset equal to ty,; and the time step was chosenequal
to t. After the samenumber N, of time steps,the nal wave function
of the time-badkward ewlution was comparedwith the initial ground-state
wave function of the time-forward calculation. The results of this test were
astonishinglygood: the di erence betweenboth functions waslessthan 10 3
at any meshpoint. This meansthat ourimplemertation of the time-ewolution
algorithm detailed in Sec.4.3.2is reversiblebut for the roundo errors.



Chapter 5

A well known one-neutron halo
nucleus: 11Be

We have seenin Chapter 1 that ''Be is, up to now, the best known one-
neutron halo nucleus. Many studies have indeed con rmed the presenceof
a one-neutronhalo in Be [Fuk91, Kel95, Oza0]. This nucleusis thus seen
asa °Be coreto which a neutron is looselybound. Moreover, the Coulonb
breakupof 1'Be on ?°8Pb hasbeenstudied experimertally in the energyrange
of our model [Nak94, Nak03. Therefore,this nucleusconstitutes the perfect
casefor a rst analysisof our theoretical method.

In this chapter we presert and analysethe main results of our study of
the 'Be breakup on 2°®Pb. It is divided into two sections. In the rst one,
we descrile the 'Be nucleusand give the parametersof the °Be-neutron
potential we useto model this nucleus. We also detail the parametrisations
of the optical potertials usedto simulate the nuclear interaction between
208pp and 'Be. In the secondsectionwe actually presert and discussthe
results obtained with the method descriked in Chapters3 and 4.

5.1 Theoretical model

5.1.1 Description of 'Be

As menioned in Chapter 3, halo nuclei are depicted in our model as two-
body structures: a pointlik e fragmert loosely bound to a pointlik e core. In
the caseof ''Be, the former is a neutron with spin| = % while the latter is
assumedo consistof a pointlik e 1°Be in its 0" ground state.

The bound spectrum of 'Be consistsonly of a { ground state and a

% excited state [Ajz90]. The experimertal valuesof the energiesof those
statesrelatively to the one-neutronseparationthreshold are reproduced in
the left-hand part of Table 5.1.

Using our two-body model, these states correspnd to nlj = 1s1=2 and
Op1=2 orbits respectively (seeSec.3.1). In a usual shellmodel [Law80], this
meansthat the ground state is seenas an sd intruder in the p shell. We
descrile this inversionusing an I-dependen potential. In orderto reproduce

the *'Be bound spectrum, we usethe 1°Be-neutron potertial of Ref. [MB99]

75
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Eexp (MeV) nlj Eth (MeV)
-0.503 1s1=2  -0.5013
-0.183 | Op1=2 -0.1844

+

J
1
2
1
2

Table 5.1: Experimertal energies(Ecy,) and quantum numbersJ of the
11Be bound states [Ajz90] (left-hand side). The theoretical energies(Ey,)
and quantum numbersnlj of the correspnding bound states obtained with
the parametersof Table 5.2 are alsolisted (right-hand side). The two Pauli-
forbidden states obtained with this potertial are: a 0s1=2 at -31.074MeV,
and a Op3=2 at -4.340MeV.

Vizo (MeV) Visg (MeV) Vs (MeV fm?) a(fm) Ry (MeV)
59.5 40.5 32.8 0.6 2.669

Table 5.2: Parametersof the 1°Be-n potential (seeSec.3.1.1for the detailed
expressionof the parametrisation).

(adapted form Ref. [KYS96]). The valuesof the correspnding parameters
of the Vs form factor detailed in Sec.3.1.1are givenin Table 5.2.

The energylevelsof the physicalbound statesobtainedwith this potential
aredisplayedin the right-hand part of Table5.1. This potential leadsalsoto
two forbidden bound states. As explainedin Sec.3.1.1,thesestatessimulate
the orbitals occupiedby the neutronsin the 1°Be core. The quarntum numbers
and binding energiesof thesestatesare given in the caption of the table.

In order to ched the ability of sud a simple model to describe the halo
structure of 'Be, we calculate the root-mean-squaredistance between the
core and the halo neutron in the 1s1=2 ground state obtained with the V.
potertial detailed in Table 5.2. This value is equalto 7.035fm. Moreover,
the probability of presenceof the neutron beyond the classicalturning point
is about 46%. This meansthat this simple two-body model, reproducing
the low binding energiesof the system, leadsto a structure in which the
neutron has a high probability of presenceoutside the nuclear-irteraction
range. The above statemerts fully agreewith the de nition of halo states
givenin Sec.1.1. Hence,it seemsthat the halo structure of 'Be is rather
well reproducedin our model.

5.1.2 Pro jectile-target potentials

We have seenin Chapter 4 that this method enablesus to useoptical poten-
tials to descrike the nuclearinteraction betweenthe target and the projectile
fragmerts. In this section,we give the valuesof the parametersappearingin
the expressionof potertial V,r detailedin Sec.3.2.

In orderto compareour resultswith the new experimertal data obtained
by Nakamura et al. [Nak03, those potertials are chosenaccordingto their
experimertal conditions: the target we consideris a 2°Pb nucleus;the initial
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corf \/ W Rgr R, ar aq RC
UBe (1) 70.0 58.9 7.43 7.19 1.040 1.000 5.92
0Be (2) 53.6 49.4 7.89 7.69 0.954 0.887 5.92
n 29.46 134 6.93 7.47 0.75 0.58 -

Table 5.3: Parametersof the n-2°8Pb [BG69] and °Be-?*®Pb [Bon89 optical
potertials. (seeSec.3.2 for the detailed expressionof the parametrisation).
Depths are expressedn MeV while radii and di usenessesare in fm. As
Wp = 0in all casesthe valuesWp, Rp and ap are not displayed.

kinetic energyof the projectile is setequalto 68A MeV2.

The n-2®Pb interaction is modeled using the Becdetti and Greenlees
parametrisation [BG69] with an energyof 68 MeV.

Sincewe could not nd any optical potential describingthe °Be-?°¢Pb
interaction, we follow Typel and Shyam [TS01H by using an adaptation of
the potertials proposedby Bonin et al. in Ref. [Bon85. These potertials
were constructedto reproducethe elastic-scatteringcrosssectionsmeasured
for particles on a 2°®Pb target. These scattering experimerts were con-
ducted at di erent energies,and for eat energythey derived three equiv-
alert parametrisations. In order to tally as much as possiblewith the ex-
perimertal conditions of the RIKEN experimert [Nak03, we use only the
parametrisations obtained for 699 MeV s. With the aim of analysingthe
in uence of the potential choice upon our calculations, we considertwo of
their parametrisations.

In orderto takeinto accourt the fact that we aredealingwith °Be projec-
tlesandnot particles, we haveincreasedhe radii R and R, they propose.
This hasbeendoneby multiplying the reducedradii of their parametrisation
by (1072 + 208"2) instead of (4= + 208"%) usedfor particles. The other
parametershave beenkept unchanged.

The values of the correspnding parametersare displayed in Table 5.3.
Sinceneither the Becdetti and Greenleegparametrisation nor that of Bonin
et al. include a surfaceterm in the imaginary potential (i.e. Wp = 0in both
cases)the valuesWp, Rp and ap are not displayedin Table 5.3.

5.2 Evolution calculation

This section examinesthe results we have obtained with our model. After
an illustration of the time ewlution of the wave function, we compare our
method with the rst-order perturbation theory (seeSec.3.4.3). For this, we
mainly focuson the breakup crosssectionsinceit correspndsto the process
we are studying. Howewer, in orderto completethis analysis,we alsoconsider
the inelastic excitation crosssectionin this comparison. We then compare
the breakup crosssection computed from our ewlution calculation output
with the experimental onesmeasuredby Nakamura et al. [Nak94, Nak03.

1This standard notation usedin the following correspondsto 68 MeV per nucleon.
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The comparisonwith experimert of the inelastic crosssectionis performed
using the value measuredin another experimernt [Nak97. After that, we
analysethe in uence of seeral aspectsof our model upon both the breakup
and the inelastic crosssections. These aspects comprisethe choice of the
projectile-target optical potential, the choiceof the trajectory (hyperbola vs
straight line), and the presenceof the Pauli forbidden states.

5.2.1 Time evolution of the pro jectile wave function

In order to illustrate the time ewlution of the wave function, we presert the
result of a calculation performed for a *Be projectile on a ?°8Pb target at
an impact parameterequalto 30 fm and an initial velocity v = 0:36¢. This
velocity correspndsto the 68A MeV kinetic energy of the 'Be beam used
by Nakamura et al. in Ref. [Nak03. Fig. 5.1 displays the results of that
calculation for an initial wave function ( r;t;j,) correspndingto the ground
state 151 1-2(r) (i.e. with mg = 1=2). The time-dependen wave function
is projected onto three di erent spin-angularstates. The rst correspndsto
that of the initial bound state (s1=2 1=2), the secondto that of the excited
state (p1=2 1=2) and the third to the most signi cant cortribution to the
breakup componert (p3=2 3=2). The wave function is depicted at times t
fromt, = 20h/MeV to t,, = 20h/MeV at intervals of 5 h/MeV.

At time tj,, the halo nucleusis in its ground state with only as1=2 1=2
componert which exhibits a characteristic exponertial decrease. At later
negative times, causality restricts modi cations of the wave function induced
by the projectile-target interaction to larger values. Indeed, for s1=2 1=2,
only the distant tail of the wave padket is a ected. Both the p1=2 1=2 and
p3=2 3=2wavesremainnegligibleat negative times. Nearthe time of closest
approad t = 0, the partial wave functions start to changemore deeply: some
parts increaseby se\eral orders of magnitude. The modi cations mainly
correspnd to the breakup componert.

We alsonote the appearanceof a small peaknearthe origin in the p1=2
1=2 wave. This peakcorrespndsto the Op1=2 excited state of the 'Be. This
illustrates that during its interaction with the target, the projectile undergces
both breakup and excitation. A similar peak, though lesssigni cant, is also
obsened in the p3=2 3=2 partial wave. It correspndsto the Op3=2 Pauli
forbidden state. Its presenceindicates that, like the physical excited state,
forbidden states are also populated during the collision. The in uence of
these unphysical states upon the ewlution calculation will be studied in
Sec.5.2.7. The p3=2 3=2 wave becomesdominart at large distances.

At positive times, the breakup componert dewelopsquickly towards large
r in all partial waves. It continuesto spreadasthe wave padet ewlves. In
spite of this ongoingspreading,the low-energybreakup crosssectionsreat
corvergencenear to,;. As merioned in Sec.4.2.3, we seethat due to this
spreading,the last point of the meshry, must be chosenaccordingto tq,; to
ensurethat the wave function doesnot read the boundary of the mesh.
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Figure 5.1: Time ewlution of the moduli of the s1=2 1=2 (a), p1=2 1=2
(b) and p3=2 3=2 (c) partial wavesof the 'Be breakup obtained with an
initial 1s1=2 1=2 bound state for v = 0:36c and b= 30 fm.
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5.2.2 Comparison with the rst-order appro ximation

In this section,we comparethe results of our model to those obtained from
a rst-order appraoximation in which only the E 1 multip ole of the projectile-
target interaction is taken into accoun. As seenin Sec.3.4.3,the accuracy
of this appraximation increaseswith the impact parameterb and the initial
relative velocity v betweenthe projectile and the target. Therefore, this
comparisonprovides us a test of the accuracyof our scheme.

For this comparison,we perform ewlution calculationsfor a 1'Be projec-
tile and a 2°®Pb target at di erent velocities (v = 0:25c, 0:3c, and 0:35) and
di erent impact parameters(b = 40 fm, 60 fm, 80 fm, and 100 fm). Since
the nuclear interaction betweenthe projectile and the target is completely
negligible for those valuesof b (see Sec.5.2.5), the potential between the
target and the projectile fragmerts is assumedo be purely Coulombic. The
calculations are performed using straight-line trajectoriesfor modelling the
projectile-target relative motion. Using those two assumptions,the results
obtained with our model can be comparedwith the formulae deweloped in
Sec.3.4.3.

Fig. 5.2 illustrates the comparisonbetweenthe breakup probability
dP,,=dE (3.38) computed with the output of our ewlution calculation and
the value dPE!=dE (3.67) obtained at the rst-order approximation. This
gure displays the ratio betweendP,,=dE and dPE!=dE asa function of the
energy We seethat for eat velocity, this ratio seemsto corvergeat high
impact parameters. The curve towards which it corvergesis an increasing
function of the energy It seemsto tend towards the constart 1 at high
velocities. This behaviour is logical since the accuracy of the rst-order
appraximation increasesat high impact parametersand high velocities. This
convergenceseemsin a closeagreemen with a similar analysis performed
by Typel and Baur [TBO1] on the breakup of °C on a 2%Pb target (see
Sec.lll and Fig. 2 of that reference).Howe\er, this corvergences very slov
in comparisonwith other caseswherethis analysishas beenmade [MBO1].

In order to understand this discrepancy let us have a look at the con-
tributions of the di erent partial wavesto the breakup probability. From
(3.67), we seethat if the rst-order appraximation were exact, the breakup
probability would be due solelyto the p componerts of the nal wave func-
tion. In Fig. 5.3 we have reproduced the cortributions of the s, p and d
partial wavesto the breakup probability at impact parameterb = 100 fm
for the three velocities consideredabove. The cortribution of the f waves
are not displayed sincethey cortribute to the breakup probability for less
than 3%. As in Fig. 5.2, the valuesare scaledby the probability dPE!=dE
calculatedat the rst-order approximation.

We seethat the cortribution of the p wavesis indeed the major one.
Howewer, those of s and d waves are not negligible even at high velocities.
This may have two explanations. The rst oneis that the appraximation
of the projectile-target potential by its rst multip ole might be not valid
here. In other words, other multip olesmay play a signi cant role. Howewer,
this would not accourt for the signi cant s-wave cortribution obsened in
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Figure 5.2: Comparisonof our calculation with the rst-order perturbation
theory. Ratio (dP,,=dE)=(dPE!=dE) of the breakup probability obtained
with our model (3.38) to that calculated with a rst-order approximation
using a pure E1 Coulonmb potertial (3.67) as a function of the energy The
calculation is performedat di erent velocities v and impact parametersh.
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Figure 5.3: Contributions of the s, p, and d wavesto the breakup probability
dP,,=dE calculatedat b= 100fm for three di erent velocities v. The values
are scaledby dPfl=dE.

Fig. 5.3. The secondexplanation is that higher ordersmight still be signi -
cant, although we considerhigh impact parametersand high velocities.

In orderto disertangle thesetwo e ects, we perform a similar calculation
usingonly the E 1 multip ole of the time-dependert potertial. Wethusreplace
the time-dependert potertial V (3.26) appearingin the Scredingerequation
by the following expression( rst term of the multip ole expansion(3.59))

Z.€ Ac A T R
4 Ap  “°Ap R(1)¥

These calculations are worked out for an impact parameterb = 100 fm at
the same velocities as in the previous tests. The results are displayed in
Fig. 5.4. They do not di er signi cantly from thoseobtained with the actual
time-depender potertial V (seeFig. 5.3).

This indicatesthat the approximation of V by its rst multip ole is rather
accurate for those distant trajectories. This suggeststhat the discrepancy
betweenour calculation and the rst-order calculation is dueto higher-order
terms of the perturbation theory. Among them, the major oneis most likely
the second-orderE 1-E1 term as suggestedin Ref. [TBO1]. It correspnds
to two successig E1 excitations. The rst one excites the neutron from
its initial 1s1=2 bound state to a p wave in the cortinuum. The second
transition, allowsthe s and d wavesto be populated. This would explain the
relatively high cortributions of those waves.

In order to investigate further in that direction, it would be interesting
to perform an ewlution calculation in which the coupling betweenthe con-
tinuum statesis switched o. Unfortunately, our model does not enableus
to do so. The method usedby Typel and Baur [TB0O1] seemsto allow the
ewlution calculation to be performedusing only the rst-order terms of the

Vea(t) = (5.1)
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Figure 5.4: Contributions of the s, p, and d wavesto the breakup probability
dP,,=dE calculatedat b= 100fm for three di erent velocities v considering
solely the E1 multip ole of the projectile-target poterntial. The values are
scaledby dPE=dE.

b=40fm b=60fm b=80fm b= 100fm
Popi=2 2.67410 3 1.17810 2% 6.38510 4 3.86810 *¢
POEpLZ 2.708 ® 1.18310° 6.40010 4 3.87310 *

Table 5.4: Comparisonbetweenthe excitation probability obtained with our
method Pgpi=> andits rst-order approximation P, .

potential (i.e. they canswitch o the coupling potentials betweenthe partial
waves). Therefore, this method would enableone to know whether or not
the second-ordetterms play a signi cant role in thesebreakup calculations.

With the aim of completing this study, we also comparethe excitation
probabilities Pgy1-, (3.40) obtained from our ewlution calculationswith the
probabilities POEpLZ (3.57) computedin the rst-order approximation. Since
only E1 transitions are allowed between the 1s1=2 ground state and the
Op1=2 excited state of !'Be (see(3.62) with I, = 0 and | = 1), the restriction
to the rst multip ole is not an appraximation in this case.

The results of this comparisonare displayed in Table 5.4 where we give
the value of Pg,:-, and PoEpi:Z at v = 0:35c for di erent impact parameters.
The probability obtained from our calculationstends towards its rst-order
approximation with a great accuracy at high impact parameters(at b =
100fm their relative di erence in only 10 3).

This very good agreemeh betweenour model and the rst-order pertur-
bation theory corntrasts with the results we have obtained for the breakup
probability. This di erence betweenboth analysesis seenas resulting from
the smallerin uence of the higher ordersin the excitation processhan in the
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breakupreaction. The coupling of the excited state with other eigenstatesof
the projectile Hamiltonian is indeedlessprobablethan for scattering states.
This indicatesthat neglectinghigher-orderterms is more relevant herethan
in the calculation of the breakup probabilities. Therefore, the discrepancy
we have obsened betweenour model and the rst-order perturbation theory
in the analysisof the breakup probabilities is most likely due to the presence
of those higher-orderterms. It seemshen that the 'Be breakupis a rather
complex processwhich cannot be accurately descriked using the rst-order
appraximation.

In this study, we have thus shavn that the di erence betweenour model
and the rst-order approximation logically decreasest high velocities and
high impact parameters. Howeer, it seemsthat the cortributions of both
s and d wavesto the breakup probabilities remains signi cant even at high
impact parametersand high velocities. The comparisonbetweenPgp;-, and
Po':ﬁzz shows that the rst-order approximation givesvaluesof the inelastic
probabilities very similar to ours for distant trajectories. This suggestghat
the high population of s and d scattering waves might be the sign of a sub-
stantial coupling in the cortinuum. Sincethis e ect is rather unusual, it
might be seenas a signature of the halo structure of the projectile.

5.2.3 Conditions of the calculation

The Coulomb breakup of !Be has been studied experimertally in 1994 at
RIKEN [Nak94. In that experimert, Nakamura et al. measuredhe breakup
crosssectionof a 72A MeV 1Be projectile on a 2°®Pb target. Recertly, they
remeasuredhis dissciation at 68A MeV. Thesedata are not published yet
but preliminary results are available in the proceedingsof a 2002conference
[Nak03.

With the aim of comparing our model to this new experimert, we have
performeda time-ewlution calculation of this reaction using the method de-
scribed in Chapters 3 and 4. The 'Be projectile is modeled with the Vi
potential described in Sec.5.1.1. The 'Be-*%®Pb interaction is represemed
using the optical potentials detailed in Sec.5.1.2. For this calculation, the
rst parametrisation of the °Be-?®Pb optical potential is used(the sensitiv-
ity of the results of our calculation to the choice of these optical potentials
will be analysedin Sec.5.2.5). The trajectory followed by the target in the
projectile rest frame is assumedto be a straight line Sec.3.3 (seeSec.5.2.6
for a discussionof this assumption). The initial relative velocity betweenthe
projectile and the target is chosenequalto v = 0:36¢c which correspndsto
the kinetic energyof 68A MeV consideredin [Nak03. This value has been
obtained using the relativistic formula

s
= 1

1
(1 + TizAp my CZ)Z’

ol<

(5.2)

whereT; is the initial kinetic energyof the projectile. Finally, the presence
of the Pauli forbidden statesin the core-fragmen potential is neglectedas
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b< 30 30< b< 100 100< b< 200 200< b< 300
hy 1 1 2 4
N, N 6,11 3,5 3,5 3,5
rn,,» Nr | 800,1000 800,800 600, 600 400,400

Table 5.5: Valuesof the numerical parametersusedin the calculation of the

11Be breakup on 2°Pb with an initial velocity v = 0:36c which corresmnds
to the 68A MeV energyof experimert [Nak03. (b, hy, andry, areexpressed
in fm).

suggestedn our previousstudy [CBMO034 (the in uence of thesestatesupon
the breakup crosssectionwill be analysedin Sec.5.2.7).

In order to ensurethe corvergenceof the scheme, the calculations are
performedfor the trajectoriescorrespnding to impact parametersb between
8 fm an 300 fm. Sincethe amplitude of the projectile-target interaction
decreasesvith increasingb, somenumerical parametersof the algorithm vary
throughout the impact-parameterrange. Those parametersare gatheredin
Table 5.5. The impact-parameterstep h, hasto be chosensu cien tly small
at low impact parameterswherethe results vary strongly with b. Howewer,
at higher impact parameter, h, can be chosenlarger.

At impact parameterslower than 30 fm, the nuclear interaction plays
a signi cant role (seeSec.5.2.5). Sincethis interaction varies rapidly with
both the angular and the radial variables,its accuratedescription requiresa
rather high number of points. Therefore, the numbers of functions N and
N. in the angular bases(see Sec.4.1) have to be chosenhigh enoughto
ensurethe corvergenceof the stheme. Above b = 30 fm, the interaction is
purely Coulombic, thereforeN and N. can be reduced.

We have seenin Sec.5.2.1that due to the interaction with the target,
the projectile wave-function dewelopsa tail which extendsrather quickly at
large distances. The magnitude of this tail dependsupon the amplitude of
the projectile-target interaction. An analysis of the ewlution of the wave
function shows us that for a xed time interval, the larger the impact pa-
rameter, the smallerthe range of this tail. The extensionof the radial mesh
canthereforebe reducedat higherimpact parameters. The number of radial
points N, is chosensothat ry, =N, 1 fm asexplainedin Sec.4.2.3(a larger
value of N, is usedwhere the rapidly varying optical potentials are taken
into accoun, i.e. for b< 30 fm).

The other numerical parametersdo not vary with b. As seenin Sec.4.2,
the wave function is discretisedover the quasiuniform mesh obtained with
the g, distribution usinga = 5 and xo = 0:6. Following the discussionin
Sec.4.3.6,the time interval chosenequalto [-20h/MeV, 20h/MeV], andthe
time stepis xed to t= 0:02h/MeV.

The corvergenceof the schemewe just mertioned, isillustrated in Figs.5.5
and5.6. In the rst gure, the breakup probabilities computedwith di erent
valuesof N and N. are represeted as a function of the energy They are
obtained from ewlution calculations performedat b = 15 fm. We seethat
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the results vary widely for low valuesof N and N. . The calculation seems
to slovly corvergeto the referencecalculation usingN = 8 and N. = 15.

We have chosento useN = 6 and N. = 11 for practical calculations. The

results obtained using these values are indeed rather closeto those of the

referencecalculation (only 1% di erence in the peak and lessthan 10% at

2 MeV). Moreover, the computational time is divided by three when those
valuesare usedinsteadof N = 8and N. = 15.
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Figure 5.5: Convergenceof the ewlution calculation with respect to the
number of angular-basisfunctions. The breakup probability computed at
v = 0:36c and b = 15 fm is displayed for seweral valuesof N. (with N =
(N + 1)=2, seeSec.4.1.5).

Fig. 5.6 illustrates the corvergenceof the stheme with respect to the
impact-parameter interval we consider. It displays the cortribution to the
total breakup crosssectionof eat of the impact-parameterintervals of Ta-
ble 5.5. For comparison,the total breakup crosssectionis pictured as well.
The rst and secondintervals (i.e. for b < 100 fm) constitute the major
contribution to the breakup crosssection. From the small amplitudes of
the cortributions of the other two intervals, we seethat the calculation has
indeedcorvergedat b= 300fm.
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Figure 5.6: Convergenceof the ewlution calculation with respect to the
impact parameter upper bound. The total breakup crosssectionas well as

the cortributions of ead of the b intervals of Table 5.5 are represered.
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Figure 5.7: Breakup crosssection(in b/MeV) of 'Be on ?%®Pp at 68A MeV
as a function of the energy The results of our calculation are plotted as a
full line (total crosssection)and a dashedline (b> 30fm). The preliminary
experimental data of [NakO3 are represeted by the open diamonds (total
crosssection) and open circles (b > 30 fm). The full circles correspnd to
the data of [Nak94 multiplied by 0.85[Nak034.

5.2.4 Comparison with the experiment

The results of our calculation (full line) are presened in Fig. 5.7, wherethe
breakup crosssectionis plotted asa function of the relative energybetween
the coreand the fragmen after dissaiation. In this gure, the experimertal
data of [Nak03 are displayedwith opendiamonds. We alsoplot the results of
the former experimert [Nak94. Thesevalues,represeted by the full circles
have beenscaledby a factor 0.85suggestedoy Nakamura after a reanalysis
of this experimernt [Nak034.

Our theoretical results agreefairly well with the experimertal data from
both experimerts. The main energydependenceof the crosssectionis indeed
well reproduced. Howewer, the slight increasethat both setsof experimental
data seemto exhibit near 1 MeV is not reproduced by our model. Our
calculatedcrosssectionis in very good agreemeh with the results of [Nak94]
at low energy It seemdo disagreewith the preliminary results of [Nak03 at
the sameenergies.Howeer, thesenew results are in disagreemen with the
former ones. The explanation of this discrepancybetweenboth experimerts
hasto wait for the nal analysisand the publication of the newRIKEN data.

In Fig. 5.7 we have also pictured the crosssection we obtain consider-
ing only the trajectorieswith an impact parameter above 30 fm. This has
been done to compareour results to the correspnding measuredbreakup
crosssection represemed by open circles [Nak03?. We seethat our calcu-

2In the analysis of their measuremets, Nakamura et al. assumedthe projectile to
follow a Rutherford trajectory. The impact parameter is thus related to the scattering
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lated breakup crosssectionis in very good agreemenh with the preliminary
experimertal data above 0.5 MeV. Howewer, asin the caseof the total cross
section, a discrepancyexists betweenexperimert and theory at low energy

From this analysis,we seethat the results of our calculation agreefairly
well with the experimertal data. As mertioned in Sec.5.1.1, theseresults
are obtained by describingthe 'Be projectile asa 1°Be corein its 0* ground
state to which alooselybound s1=2 neutron is bound. This suggestghat this
con guration isdominart in the structure of 1'Be, and that the correspnding
spectroscopicfactor should be closeto unity.

Howewer, Nakamura et al. have inferred from the preliminary analysisof
their measuremets at b> 30 fm a spectroscopicfactor equalto 0:69 0:04
[Nak03 Nak03Q. This value hasbeenobtained comparingthe experimental
data with a rst-order calculation. This meansthat they assumedthat at
theseimpact parametersboth nuclearand higher-ordere ects are negligible.
In order to ched the validity of this assumption, we calculate the breakup
crosssectionwith an impact parameter cuto by, = 30 fm using the rst-
order formula (3.68). This crosssectionis displayedin Fig. 5.8 (dotted line).
For comparison,the value obtained from our ewlution calculationis pictured
aswell (dashedline). Both results agreefairly well. This suggestghat the
rst-order assumptionmade by Nakamura et al. is justi ed.
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Figure 5.8: Comparisonbetweenthe ewlution calculation (dashedline) and
the rst-order approximation (dotted line) for b> 30 fm. The latter is also
represeted multiplied by the spectroscopicfactor 0.69 obtained by Naka-
mura et al. from the analysis of their experimernt [Nak03 Nak03Q (dash-
dotted line). For comparisontheseexperimertal data are plotted aswell.

Howewer, we seethat when multiplied by the 0.69 spectroscopicfactor,
the rst-order calculation fails to reproduce the experimertal crosssection
(seedash-dottedline in Fig. 5.8). This is most likely due to the fact that the

angle of the certre of massof the 1°Be+n systemthrough relation (3.31).
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theoretical values displayed here are not corvoluted with the instrumental
response. Therefore, the extraction of the spectroscopicfactor from our
calculationswill have to wait for the publication of theseexperimertal data.
Newertheless,sincethe appraximation usedby Nakamura et al. seemso be
valid, the spectroscopicfactor to be inferred from our calculationsshould be
closeto 0.69.

This value is in fair agreemeh with another recert experimertal value
obtained by Palit et al. [Pal03. They measuredthe breakup crosssection
of 1!Be on both a lead and a carbon target at 5200 MeV. Using a rst-
order analysis,they obtained a spectroscopicfactor of 0:61 5 from the cross
sectionmeasuredwith the leadtarget. Howewer, from a Glauber-type model,
they inferred a spectroscopicfactor of 0:77 4 from the data obtained with
the carbon target. They could not explain the discrepancybetween both
values.

Theserelatively low valuesseemto disagreewith the rather strong dom-
inanceof the [0"  s1=2] con guration obtained in most of the currert stud-
ies. Geithner et al. [Gei99 have measuredthe magnetic momert of 1!Be.
Their result suggesta nearly pure [0"  s1=2] con guration. Wineld et al.
[Win01] have measuredthe crosssectionof the one-neutrontransfer reaction
1Be(p;d)'°Be. Comparing their measuremen to theoretical models, they
inferred a 16% admixture of the [2° d5=2] con guration. In this con gura-
tion, the 1=2* ground state of 'Be is viewed as a d5=2 neutron linked to a
10Be corein its 2* rst excited state. From a one-neutronknockout reaction
of a 'Be projectile on a °Be target [Aum0Q], Aumann et al. inferred an
amourt of 22% of the core excitation in the 'Be ground state. Howewer, a
recen reanalysisof this experimert [Tos03 suggestshat the spectroscopic
factor of the [0"  s1=2] con guration might be higher. Ref.[0Oza0] includes
a reanalysisof the measuremets of the interaction crosssectionsof 'Be
performedby Fukuda et al. [Fuk91]. Using a Glauber-like model, Ozava et
al. have deduceda spectroscopicfactor of the [0"  s1=2] con guration of
0.84. This value con rms the spectroscopicfactor deducedby Win eld et al.
[Win01]. Therefore, we seethat the exact value of this spectroscopicfactor
is still subject to discussion.

From our ewlution calculations,we alsoextract the value of the excitation
crosssectiontowards the 3 state of *'Be: gu-, = 734 mb. This value has
beenmeasuredoy Nakamura et al. in anotherexperimert for a 1*Be projectile
impinging upon a 2%®Pb target at 64A MeV [Nak97. They obtained an
excitation crosssectionof 302 31 mb. The discrepancybetweenthe two
valuescannot be explainedby the slight energydi erence, nor is it justi ed
by any of the spectroscopicfactors given above.

This di erence might be due to the fact that the cortributions of the
con gurations including the 2* excited state of the °Be core are not the
samein the { ground state and the % excited state [NTJ96, Des91. This
suggestghat our modelling of the excited state of 1*Be may not be valid, and
that a better model of this nucleusshould be usedin order to infer accurate
excitation crosssections.
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5.2.5 Sensitivit y to the choice of the optical potential

In the previous section, we sawv that the results of our calculation are in
fair agreemen with the experimert data. Theseresults have beenobtained
using optical potentials to simulate the nuclearinteraction between!!Be and
208pp (seeSec.5.1.2). With the aim of investigating the in uence of these
potentials upon our ewlution calculation, we perform se\eral tests. The
results of thesetests are detailed in this section.

We rst analysethe sensitivity of our calculation to the choice of the
optical potertials by comparingresults obtained with di erent parametrisa-
tions of thesepotertials. We alsocompareour calculationto that worked out
using a purely Coulomb projectile-target interaction. As mertioned earlier,
the nuclearinteraction, in that case,is modelledby a mereimpact-parameter
cuto (seeSec.3.2). We nally study the e ect of eat term of the projectile-
target potertial (i.e. the core-targetand fragmert-target potential) upon our
results.

Fig. 5.9 shows the breakup probability of 'Be on ?°8Pb asa function of b
for three relative energiesof the projectile fragmerts after breakup (0.5, 1.0,
and 1.5 MeV). The ewlution is computedin v e di erent cases.In the rst
one (full lines), we usethe samepotentials asin the precedingsection. In
the secondcase(short dashedlines), the secondparametrisation of the core-
target potertial given in Table 5.3 is used, while the same neutron-target
interaction is chosen. In the third and fourth cases(long dashedand dot-
dashedlines respectively), the sameoptical potertials asin the rst caseare
used,but their amplitudes are multiplied by 0.8 and 1.2 respectively. In the
fth case(dotted lines), the calculation is performed without any nuclear
potertial betweenthe projectile and the target.

The calculationsare performedunder the conditionsdetailedin Sec.5.2.3.
It shouldbe notedthat dueto the smaoother variation of the purely Coulombic
potertial in comparisonwith that of the optical potertials, the corvergence
canbereahedusingonly N = 4, N. = 7and N, = 800in the fth case.

The breakup probabilities obtained without optical potential monoton-
ically decreaseas a function of b. It divergeswhen b tendsto O as a con-
sequenceof the purely Coulombic nature of the interaction betweenprojec-
tile and target. In the calculations performedwith an optical potential the
breakup probability is negligible near b = 0 becauseof strong absorption.
When approading the range of absorption in the nuclear optical potertial,
the probability increasesand readhesa maximum located around 12-14fm.
At energiesbelow that maximum the breakup probability remains smaller
than that calculated without any optical potential. At energieslarger than
0.5 MeV, the nuclear interaction with the target leadsto a signi cant in-
creaseof the breakup probability. From b= 20-25fm, all results exhibit the
samebehaviour aswithout nuclearinteraction.

The breakup probabilities obtained in the rst and secondcasesare very
closeto ead other. This meansthat both parametrisations of the core-
target optical potential obtained by Bonin et al. leadto similar results. This
indicatesthat the ewlution calculation is not very sensitive to the choice of
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Figure 5.9: In uence of the choice of the optical potential upon our calcula-
tion. The breakup probability per MeV of 'Be on a ?°®Pb target is plotted
for E = 0.5, 1.0and 1.5 MeV. Calculations are performedwith v e di erent
modellings of the nuclear interaction (seetext).

thesepotertials. Howeer, sincethose parametrisationshave beenobtained
by the samegroup usingthe sametechnique and the sameexperimertal data,
this might not re ect the sensitivity of our calculationsto the choice of the
nuclear interaction. The similarity of theseresults might indeedonly re ect
the fact that both potertials reproducethe samescattering data.

This is the reasonfor the tests performedwith a reduction (third case)
or an increase(fourth case)of 20% of the amplitudes of the optical poten-
tials. The resultsobtainedin thosecasesare not strongly di erent from those
obtained in the rst case. When the optical potentials are multiplied by a
factor of 0.8, the breakup probability is increaseddue to the reduction of the
absorption term. Howewer, this rise does not exceed8 % in the maximum
region. The useof a multiplication factor of 1.2 hasthe opposite e ect. In
this case the breakup probability is decreased.This drop correspndsto ap-
proximately 4 % of the value obtainedin the rst casenearb= 14fm. These
testscon rm thereforethat the ewlution calculation is not very sensitive to
the choicewe make of the optical potential modelling the nuclear interaction
betweenthe projectile and the target.

The comparisonof the breakup probabilities calculated with and with-
out optical potential suggestshat the impact-parametercuto by, should
depend on energyin order to simulate nuclear e ects. We have tted by,
to obtain the samebreakup crosssectionin a pure Coulomb breakup ap-
proximation asin the rst calculation involving an optical potential at the
energiesof Fig. 5.9. The correspnding by, are12.7fm at 0.5MeV, 11.0fm
at 1.0MeV and 9.4fm at 1.5MeV. This meansthat the choiceof an adequate
impact-parametercuto by, in a bladk-disk appraoximation is not straight-
forward. It should be noted that the valuesof by, obtained with the other
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optical potentials do not di er by more than 0.5 fm from those mernioned
above. This indicates that our results are much lesssensitive to the choice
of the optical potertials than to the value of the impact parameter cuto .
Sincethe introduction of optical potentials is very simplein this method (see
Chapter 4), it seemdetter to usethem to model the projectile-target nuclear
interaction.

In orderto analysethe in uence of the modelling of the nuclearinteraction
upon the breakup crosssection,we have computedthesecrosssectionsusing
eat oneof the v e casesmertioned above. The results of thesecalculations
are displayed in Fig. 5.10. In the fth casewhere no optical potertial is
used,the nuclear interaction is simulated by an impact-parametercuto at
b= 13fmto t the other calculationsin the peaknear0:3 MeV. The results
obtained with the second'°Be-?°8Pb potertial are not represemed sincethey
cannot be distinguishedfrom those correspnding to the rst potential. The
experimertal data of Refs. [Nak94 and [Nak03 are also represered, the
former being scaledby a factor 0.85[Nak034.
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Figure 5.10: In uence of the choiceof the optical potertial upon the breakup
crosssectionof 'Be on 2°®Pb. Calculationsare performedusingthe di erent
modellings of the nuclear interaction (seetext). The results obtained with
the second'°Be-*®Pb potertial, beingindistinguishablefrom thosewith the
rst potential, are not displayed.

Theseresults con rm that our calculation is not very sensitive to the
choice of the optical potential. Although the potentials usedin the third an
fourth casedi er by 40%,the relative di erence betweenthe correspnding
breakupcrosssectionsis only of 2%in the peakregionand doesnot exceed®%
at 2 MeV. Wealsoseethat the discrepancybetweenthe crosssectionobtained
with the purely Coulombic interaction and those computed using optical
potentials increaseswith the energy This e ect, already mertioned by Typel
and Shyam [TS01H, indicatesthat in this case the nuclearinteraction is not
well simulated by a mere black-disk approximation.



94 CHAPTER 5. !1Be

In order to completethis study, we analysethe in uence of the choice of
the optical potential upon the inelastic crosssection. For this analysis, we
considerthe output of the v edi erent ewlution calculationsdetailed above.

The results of thesetests are shovn in Fig. 5.11. We seethat the inelastic
probabilities obtained from our ewlution calculations behave similarly to
the breakup probabilities depicted in Fig. 5.9. It should be noted that,
unlike the breakup probabilities, the inelastic probabilities obtained with a
nuclear potertial are smallerthan those computedwith a purely Coulombic
interaction at all impact parameter.
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Figure 5.11: In uence of the choiceof the optical potential upon the inelastic
excitation probability Poyi— to the Opl=2 excited state of 'Be. Calculations
are performed using the v e di erent modellings of the nuclear interaction
detailed above.

The comparisonbetweenthe results obtained with the di erent nuclear
potertials leadsto the sameconclusionsas in the analysis of the breakup
process.

In orderto quartify thesedi erences, we have computedthe value of the
inelastic crosssectionby integrating the inelastic probability over the impact
parameterb. The valuesobtained with the four optical potertials are listed
in Table 5.6. For comparison,the inelastic crosssection calculated without
optical potertial using an impact parametercuto at by, = 13 fm is also
displayed.

Potential | C.+N.(1) | C.+N.(2) | C.+0:8 N.(1) | C.+1:2 N.(1) | Coul.
op1=2 (D) 0.734 0.735 0.741 0.729 0.707

Table 5.6: Valuesof the inelastic crosssection ¢,;-, obtained with the four
di erent parametrisations of the projectile-target optical potentials. The
valuecomputedwithout nuclearpotential is givenfor acuto at by, = 13fm.
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Thesevaluescon rm that, like the breakup crosssection, the inelastic
crosssectionis not very sensitive to the choice of the optical potertial. The
relative di erence betweenthem is indeedlessthan 2%. We also seethat
the use of an impact parameter cuto at b, = 13 fm leadsto a slightly
underestimation of the inelastic crosssection computed without optical po-
tential. In order to obtain the samevalue as with the nuclear potertials, a
value of b, = 11:5 0:5 fm should be used. This againillustrates that no
impact-parameter cuto can fairly simulate the nuclear interaction in this
case.

It should be noted that, unlike in the computation of the breakup cross
section, the corvergenceis not reated at b = 300 fm in this case. This
can be easily understood from the asymptotic behaviour of the rst-order
appraximation of the inelastic probability (3.57). This probability decreases
roughly asexp( 2b E=hv) where E is the excitation energy The small
value of the excitation energy( E = 0:320MeV) explainsthis slov cornver-
gence. Howewer, we have seenin Sec.5.2.2that the excitation probability
computedwith our model corvergestowards that obtained at the rst-order
appraximation at high impact parameter. Therefore, in order to compute
the valuesof the crosssectionsgivenin Table 5.6, we assumethat the inelas-
tic probability exhibits the samebehaviour asits rst-order appraximation
above b= 300fm. This leadsto an increaseof the excitation crosssectionof
0:029b. We think that the error due to this proceduredoesnot exceedl-2
10 3 b

Weturn now towardsthe individual e ects of the core-targetand fragmert-
target nuclear potertials on our results. This analysis has been done by
neglecting either the former or the latter in the ewlution calculation. The
breakup probabilities obtained in those tests are depictedin Fig. 5.12asa
function of the impact parameter for three relative energies(0.5, 1.0, and
1.5MeV). The results of the test in which we have consideredthe rst °Be-
208pp potential of Table 5.3 while the neutron-?®Pb potential was assumed
to be nil are represeted as dashedlines. The values computed using the
neutron-2°®Pb potential of Table 5.3 and neglectingthe nuclear part of the
10Be-2%8pp potential are displayed as dot-dashedlines. For comparison,the
breakup probabilities obtained with both optical potentials (full lines) and
with a purely Coulonmbic potential (dotted lines) are also depicted.

The rolesplayed by eat of theseoptical potentials seemto be very di er-
ert. Thein uence ofthe °Be-*°®Pb nuclearpotential is very strongat low im-
pact parametersbut becomesegligiblebeyond b= 15fm. Above this value,
the breakup probability is indeed identical to that obtained with a purely
Coulombic interaction. On the other hand, the e ect of the neutron->°6Pb
potential is smallerin amplitude but remainssigni cant upto b= 20 25fm.
We seealsothat this potertial is responsiblefor the increaseof the breakup
probability obsened when the optical potertials are considered.

Fig. 5.13illustrates that the samee ects are obsened for the excitation
probability.

It seemsthereforethat the in uence of the nuclear interaction onto the
ewlution calculationis dominated by the core-targetpotential at low impact
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Figure 5.12: Individual in uence of the 1°Be- and n-28Pb nuclear potertials
on the ewlution calculation. Breakup probabilities per MeV are represeted
for E = 0.5, 1.0 and 1.5 MeV. Calculation have been performed with ei-
ther the °Be-?®Pb (dashedlines) or the n-2°Pb (dash-dotted lines) nuclear
potential. For comparison,the results including both terms (full lines) and
none of them (dotted lines) are alsodisplayed.

parameter. The neutron-target potential seemsto a ect the wave function
behaviour at higher b.

This di erence is most likely due to two distinct causes.The rst oneis
the Coulomb repulsion betweenthe °Be core and the target. The second
oneis the high probability of presenceof the neutron at a large distancefrom
the projectile certre of mass.

The Coulomb repulsion betweenthe core and the target indeed inhibits
the nuclear interaction betweenthem. Therefore, this interaction plays a
role only when the projectile and the target are closeto eat other. That
is to say, whentheir relative motion is descriked by a trajectory with a low
impact parameter.

Sincethe neutron is not sensitive to this Coulomb eld, it is not repelled
by the target. This meansthat in this case,the nuclear interaction is not
inhibited by the Coulomb repulsion at large distances. We will indeed see
in Chapter 7 that, when the fragmen is charged, the nuclear interaction
betweenthe fragmert and the target is strongly hindered. Moreover, the fact
that the halo neutron has a high probability of presenceat a large distance
from the coreimplies that its interaction with the target can be signi cant
ewven for distant trajectories. This might be seenas a signature of the halo
structure of the projectile.
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Figure 5.13: Individual in uence of the 1°Be- and n-2°8Pb nuclear potertials
on the excitation process. Calculations have been performed in the four
di erent casesdetailed above.

5.2.6 Choice of the tra jectory

In the precedingsections,the ewlution calculations have been performed
using straight-line trajectories to describe the relative motion of the pro-
jectile and the target. This approximation has already beenusedby many
authors (seee.g. Refs.[KYS94], [EBB95]). As mertioned in Sec.3.3, this
approximation is justi ed by the fact that we are consideringrelatively high
velocities. However, since the interaction betweenthose nuclei is assumed
to be dominated by the Coulomb interaction (seeSec.3.2), we should make
useof Rutherford trajectories(seeSec.3.3). In a previousanalysis,Melezhik
and Baye [MB99] have shown that this appraximation is legitimate.

With the aim of con rming this result, we perform a calculation using
hyperbolic trajectories instead of straight lines. A similar calculation has
alsobeenworked out by Typel and Shyam [TS014. Howewer, sincethey do
not comparetheir results with thoseobtained with straight-line trajectories,
nothing can be inferred about the accuracyof this approximation.

This calculation is performedwith the sameconditionsasthosedescriked
in Sec.5.2.3. The Coulomb tra jectoriesare derived from the parametrisation
descriked in Sec.3.3. The initial velocity v consideredhere is assumedto
be the sameas that used for the straight-line trajectories, that is to say
v = 0:36c.

The results of this test are illustrated in Fig. 5.14. The valuesobtained
using straight-line trajectories are pictured as full lines while those corre-
sponding to hyperbolas are drawn as dashedlines.

For eat energy the breakup probability computedwith Rutherford tra-
jectories can be seen,to someextern, asthat obtained with straight lines
translated towards lower impact parameters. This e ect is due to the cur-
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Figure 5.14: In uence of the choice of the trajectory on the ewlution calcu-
lation. Breakup probabilities per MeV are represeted for E = 0:5, 1.0 and
1.5 MeV. Calculations are performed using either hyperbolic (dashedlines)
or straight-line (full lines) trajectories.

vature of the hyperbolas. At xed impact parameter,the distanceof closest
approad betweenthe projectile and the target is indeed larger for hyper-
bolas than for straight-line trajectories. This meansthat the results ob-
tained with a Coulomb trajectory are better reproducedusing a straight line
with a slightly larger impact parameter. The curvature of the hyperbola
decreasest high b, hencethis e ect is lesssigni cant when we considerdis-
tant trajectories. This is obvious in Fig. 5.14,wherethe di erence between
both calculationsis signi cant at low b only. Howewer, this e ect remains
very small, and, when integrated over the ertire impact-parameter range,
it is completely negligible. For example,the relative di erence betweenthe
breakup crosssectionscomputed with both trajectoriesis lessthan half a
percen in the peakregion,and doesnot exceed2% at E = 2 MeV.

In orderto completethis study, we analysethe in uence of the trajectory
upon the inelastic process.In Fig. 5.15,we depict the excitation probabilities
obtained with both the straight-line (full line) and the hyperbolic (dashed
line) trajectories. As in the caseof the breakup probability, the main dif-
ferencebetweenthe two calculationslies at low impact parameters. In this
case, this di erence vanishesfor b > 15 fm. Therefore, the choice of the
trajectory seemsto have little in uence upon the inelastic processas well.
When the probability is integrated over b, this di erence becomesmegligible.
Using hyperbolic trajectories, we obtain an inelastic crosssectionof 0:736b.
This value hasto be comparedto that computedwith a straight-line trajec-
tory which is 0:734 b. It should be noted that the di erence betweenboth
crosssectionsis of the sameorder of magnitude asthe uncertainty dueto the
extensionfor b> 300fm, of our results by the inelastic probability obtained
at the rst-order approximation.
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Figure 5.15: In uence of the choiceof the trajectory on the inelastic process.

This analysis shows that the use of straight-line trajectories to model
the projectile-target relative motion instead of hyperbolasis plainly justi ed
at these energies. A more accurate description of this motion should of
courseinclude the nuclear interaction betweenthe projectile and the target.
Howewer, due to the short range of the nuclear interaction, the modi cation
should be signi cant only at low impact parameters,and should not alter
our results substanially .

52.7 Inuence of the Pauli forbidden sates

In Sec.5.1.1,we have seenthat our choiceof core-fragmen potential includes
two unphysical statesin the 'Be bound spectrum. As explainedin Sec.3.1.1,
these 0s1=2 and Op3=2 states simulate the neutron orbitals of the core for-
bidden to the halo neutron by the Pauli principle. Usually, the presenceof
theseunphysical deepbound statesis ignored [EBB95, KYS96, MB99]. This
appraximation is justi ed by the fact that theseforbidden statesare weakly
populated. In order to ched this assumption,we have performedan ewlu-
tion calculation at b= 15fm with an initial velocity v = 0:36c. At the end
of this calculation, the probabilities of occupation are 4.0 10 ° for the 0s1=2
state and 4.7 10 3 for the Op3=2 state. For comparison,the probabilities
of occupation of the physical bound states are 0.86 for the 1s1=2 state and
1.4 10 2 for the Op1=2 state. Although the population of the 0s1=2 state is
indeednegligible, that of the Op3=2 state is not soweak.

It is therefore interesting to ched this appraximation by performing a
calculation in which these states are removed. We have seenin Sec.3.1.3
that using pairs of supersymmetric transformations allows the construction
of a supersymmetricequivalent potential (SEP). The bound spectrum of this
potential isidentical to that of the initial oneexceptfor the unphysicalbound
states, which have beenremoved. Moreover, this SEP is phaseequivalert.
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Figure 5.16: E ectiv e °Be-n potentials for the s1=2, p1=2 and p3=2 partial
waves. Both the initial Woods-Saxonpotertials (WSP) (seeTable 5.2) (full
lines) and the supersymmetricequivalent potertials (SEP) (dotted lines) are
displayed.

That is to say that it exhibits the samephaseshifts asthe original potertial.

In this section, we analysethe in uence of these unphysical states onto
the breakup of 1Be on 2°8Pb. We perform an ewlution calculation using
a SEP obtained after the removal of both the 0s1=2 and 0p3=2 unphysical
bound statesof the initial Woods-Saxonpotertial (WSP) givenin Table5.2.
The SEP and WSP are displayed in Fig. 5.16 for the s1=2, p3=2, and p1=2
partial waves as dotted and full lines respectively (the depicted potentials
correspnd to the e ectiv e potertials, i.e. including the certrifugal barrier).
For p1=2 (as for higher partial waves), both potertials are identical.

The ewlution calculation usingthe SEP is performedin exactly the same
physical and numerical conditions asthosedetailedin Sec.5.2.3. The results
of our study are represeted in Fig. 5.17. The cortributions of the three
dominant 1] componerts are also displayed. The valuesobtained with the
SEP are represeted as dotted lines while those correspnding to the WSP
are depicted asfull lines.

As seenin Fig. 5.17,the resultsobtained with the SEP are quite similar to
those obtained with the initial WSP. The corresmpnding crosssectionsdi er
by only 1% in the peakregion. This meansthat the presenceof the Pauli
forbidden states does not signi cantly modify the projectile-breakup cross
section. This fully justi es the useof deeppotentials in sud calculations. We
alsoseethat the di erence betweenthe SEP and the WSP varies according
to the partial wave. The removal of the unphysical bound statesindeedleads
to an increaseof about 2.5% of the breakup crosssectionfor the dominart
p3=2 wave. Howewer, this elimination seemsto reducethe cortribution of
the p1=2 wave by approximately 5%. The di erence betweenboth s1=2-wave
cortributions is negligible.
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Figure 5.17: In uence of the Pauli forbidden states of the °Be-n potertial
onto the breakup crosssection. The dominant s1=2, p1=2 and p3=2 compo-
nerts are indicated separately

With the aim of understandingthesee ects in physical terms, we make
useof the rst-order perturbation theory (seeSec.3.4.3). We have seenthat
with this approximation, the breakup crosssection can easily be calculated
if the interaction between the projectile and the target is assumedpurely
Coulombic. For this simple analysis,we make useof formula (3.68) obtained
by consideringonly the rst multip ole of this interaction. The impact param-
etercuto usedto simulate the nuclearinteraction betweenthe projectile and
the target hasbeen xed to b, = 13fm asin Sec.5.2.5. The breakup cross
sectionis calculatedwith this formula using both the SEP and the WSP for
modelling the core-fragmen interaction. The resultsof thosecalculationsare
displayed in Fig. 5.18. The cortribution of the p3=2 and p1=2 partial waves
are represeted as well. The cortributions of other partial waves, like the
s1=2 ones,cannot be explainedin sud a simple model. Howewer, sincethe
major cortributions are due to p waves, it is su cient to have a qualitative
explanation of thesemaodi cations.

As seenin this gure, the rst-order approximation qualitativ ely repro-
ducesthe e ects obsened in the results of the ewlution calculation.

In (3.68), the only dependenceon the core-fragmen potential liesin the
radial integral. This integral is indeeda function of the radial wave functions
of the initial and nal states. Sincethesewave functions are modi ed by the
useof the SEP, the variations in the di erent cortributions to the breakup
crosssectionshould be explainedby analysingthesemodi cations. Fig. 5.19
displays the radial wave functions of somepartial wavesusedfor this analysis.

In the part (a) of this gure, the wave function of the physical ground
state of 'Be is depicted. It is obtained using both the initial WSP (full
line) and the SEP (dotted line). We seethat the removal of the (unphysical)
0s1=2 state of the WSP leadsto the elimination of the node of the wave
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Figure 5.18: Analysis at the rst-order approximation of the in uence of the
Pauli forbidden statesonto the breakupcrosssectionof 'Be on ?°8Pb. Values
are computed using (3.68) where only the E1 multip ole of the projectile-
target interaction is considered. The nuclear interaction is simulated by an
impact-parametercuto at b, = 13fm. Both pl=2 and p3=2 componerts
are indicated separately

function. Howewer, the asymptotic behaviour of the wave function is not
modi ed by the supersymmetric transformations. This is due to the fact
that thesetransformationsa ect only the internal part of the wave function,
asexplainedin Sec.3.1.3. The part (b) of Fig. 5.19displays the wave function
of the p1=2 scattering state correspnding to arelative energyof E = 1 MeV.
As already mertioned, the SEP and the WSP coincidefor this wave. Hence,
the scattering states obtained with both potertials are idertical. The radial
wave functions of a p3=2 scattering state are plotted in the part (c) of the
gure. Asin part (b), they have beencomputedfor E = 1 MeV. Sincethe
Pauli forbidden 0p3=2 state of the WSP has beenremoved in the SEP, the
wave functions obtained with both potentials are not the same. Here also,
we seethat the modi cation occursonly at small distances. This illustrates
the fact that the scattering properties of the SEP are identical to those of
the initial WSP.

The analysisof Fig. 5.19enablesus to qualitativ ely understandthe mod-
i cations in both p cortributions to the breakup crosssection due to the
removal of the Pauli forbidden states of the WSP. We indeed seethat the
elimination of the node in the s1=2 physical bound state wave function (a)
increasesthe domain where this wave function and that of the pl=2 scat-
tering state (b) have opposite signs. This suggestsa decreaseof the radial
integral appearing in (3.68). This explain the small reduction of the p1=2
contribution obsened in both Fig. 5.18and Fig. 5.17.

The modi cations of both the s1=2 bound state (a) and the p3=2 scat-
tering state (c) due to the removal of the forbidden bound states lead to
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Figure 5.19: Radial wave functions of (a) the physical ground state of the
10Be-n system; (b) a scattering state of this systemin the p1=2 wave; (c) a
scattering state in the p3=2 wave. The scattering states are computed at a

relative energy of

E = 1 MeV. Both results coincidefor the p1=2 wave.
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Figure 5.20: In uence of the Pauli forbidden statesupon the inelastic prob-
ability to the Op1=2 excited state of 'Be.

an increaseof the domain where both functions have the samesign. This
explains the slight rise of the radial integral of (3.68), and therefore that
the p3=2 cortribution to the breakup crosssectionis larger whenthe SEP is
used.

Asin the previoussections,we alsoperformthis analysisfor the excitation
process. The inelastic probabilities obtained with both the WSP and the
SEP are displayed in Fig. 5.20 as a function of the impact parameter. We
seethat the removal of the Pauli forbidden states modi es more deeply the
inelastic probabilities than the breakup ones. The values computed using
the SEP are higher than those obtained with the initial WSP. The relative
di erence betweenboth calculationsis about 14-16%in the ertire impact-
parameterrange. This meansthat unlike the other e ects we have studiedin
the previous sections,this modi cation is signi cant at every b. The values
of the excitation crosssectionsare of 0.840b when consideringthe SEP and
of 0.734b with the WSP.

This signi cant increaseof the inelastic crosssectioncan be qualitativ ely
understood in the rst-order perturbation theory (Sec.3.4.3). In Fig. 5.19,
we have indeedseenthat the elimination of the unphysical 0s1=2 state leads
to the removal of the node in the wave function of the physical 1s1=2 ground
state. Moreover, the wave function of the Opl=2 excited state doesnot ex-
hibit any node. Therefore this node removal in the physical ground state
increasesthe domain on which the wave function of both states have the
samesign. Hencethe radial integral appearingin the expressionof the rst-
order appraximation of the inelastic crosssectionis increasedwhenthe SEP
is used.

In this section, we have thus analysedthe in uence of unphysical deep
bound statesin the core-fragmen potential on the ewlution calculation. Us-
ing a supersymmetric partner of the initial potertial, we have performeda
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calculationin which theseforbiddenbound statesare eliminated. By compar-
ing the results of this calculation to thoseobtained with the initial potential,
we have shavn that thosestatesdo not play a signi cant role in the breakup
process.The useof deeppotentials thereforeseemdully justi ed in sud cal-
culations. Larger di erences are obsened in the calculation of the inelastic
crosssections. This meansthat the presenceof the Pauli forbidden statesis
more in uent upon the excitation process.

The sametechnique hasalreadybeenappliedto study the in uence of the
Pauli forbiddenbound statesonto the bound-stateproperties(binding energy
and root-mean-squareradius) of neutron halo nuclei [RVB96, HBS99]. In
the rst referenceRidikas, Vaagenand Bang modelled *'Be with a potertial
leading to analytical expressionof the wave functions. They found that the
unphysical states do not signi cantly modify the static properties of these
nuclei. Hesse,Baye and Sparerberg [HBS99 reated the sameconclusion
for two-neutron halo nuclei using more realistic potertials for modelling the
di erent two-body interactions. The presen study is, to someextend, the
completion of theseanalysesasit concernghe e ect of the unphysicalbound
states upon the dynamical properties of *'Be.

We have also shown that the modi cations of the breakup and inelastic
crosssectionsdue to the removal of the unphysical states can qualitativ ely
be understood using a rst-order calculation.
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Chapter 6

A candidate one-neutron halo
nucleus: 1C

In the previous chapter, we have analysedthe Coulonb breakup of the one-
neutron halo nucleus*Be on 2%®Pb. This analysis shaved that the results
obtained with our theoretical model are in fair agreemeh with the experi-
mertal data. This seemdo indicate that our method descrilkesthe breakup
of one-neutronhalo nuclei on heary targets rather accurately

With the aim of applying our model to other halo nuclei, we now turn to
the 1°C. As seenin Chapter 1, this nucleusis a candidate one-neutronhalo
nucleus. This suggestghat °C may be rather well descriked asa “C coreto
which a neutron is looselybound. Furthermore, the Coulomb breakup of 1°C
on 22Ph hasbeenstudied in a recert experimert performedby Nakamura et
al. [Nak03.

This chapter examinesthe theoretical study of the Coulomb breakup of
15C on a 2%Pb target. Like the previouschapter, it is divided into two parts.
The rst onecomprisesthe ingredierts of our theoretical model. That is to
sa& the parametrisationsof the *C-neutron potential and the optical poten-
tials usedto simulate the projectile-target nuclearinteraction. In the second
part, we presen and analysethe results of our model. This part includes,
among other things, the comparisonof the breakup crosssection computed
after our ewolution calculationswith the preliminary data of Nakamura et al.
[Nak03.

6.1 Theoretical model

6.1.1 Description of *C

In our model, the *°C nucleusis represeted by a pointlik e neutron loosely
bound to a pointlik e *C core. The neutron hasa spin| = 1, while the core
is assumedto be in its 0" ground state. The interaction betweenthose two
bodies is modelled by a local potertial with the Vs form factor descriled
in Sec.3.1.1. The diusenessa and radius Ry of this potential are chosen
equalto thoseusedfor 11Be: a = 0:6 fm and Ro = 1:2A5~ fm. The depths
of the certral and spin-obit coupling terms are adapted to reproduce the
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JEep(MeV) ep(MeV) | nlj En (MeV) n (MeV)
1218 - 1s1=2  -1.2180 -

St -0.478 - 0d5=2  -0.4783 -
356 01 17 04 |0d3=2  3.25 17

Table 6.1: Experimertal bound-state and resonanceenergies(Eeyp), width
( exp) @and quantum numbersJ of the 1°C [Ajz91] usedto t the parameters
of the V¢ potential (left-hand side). The theoretical energies(Ey,), width
( t) andquantum numbersnlj obtainedwith the parametersof Table6.2are
alsolisted (right-hand side). The three Pauli forbiddenbound statesobtained
with this potential are: a 0s1=2 at -30.21MeV, a 0p3=2 at -14.24MeV and
a 0pl=2 at -10.82MeV.

bound states and one of the resonance®f 1°C. The bound spectrum of *°C
comprisesonly two states: a %+ ground state and a single g+ excited state.
In our two-body model, they are viewed asnlj = 1s1=2 and 0d5=2 orbitals.
The resonancewe considerlies in a §+ orbit. This orbit correspndsto a
0d3=2 wave in our description. The experimertal energiesof thesestates, as
well asthe width of the resonancearelisted in the left-hand sideof Table6.1.

It should be noted that these valuescorrespnd solely to either s or d
waves. This meansthat only the depths of the potential for | = Oand | = 2
are adjusted to experimertal data. As in the 'Be case(seeSec.5.1.1), we
considerthe samepotential for all partial waveswith | > 0. The value of the
parameterswe have obtained in this way are reproducedin Table 6.2. The
right-hand side of Table 6.1 displays the quantum numbers and energiesof
the physical bound states we get using this potential. This potential leads
alsoto three forbidden bound states. Their quantum numbers and energies
are listed in the caption of the gure.

Vio (MeV) Viso (MeV) Vs (MeV fm?) a(fm) Rg (MeV)
52.814 51.3 20.77 0.6 2.959

Table 6.2: Parametersof the 4C-n potential (seeSec.3.1.1for the detailed
expressionof the parametrisation).

Usingthis potential, the root-mean-squareadistancebetweenthe coreand
the halo neutron in the 1s1=2 ground state is equalto 5.391fm. This value
is rather large when comparedwith the range of the nuclear interaction.
Furthermore, the probability of presenceof the neutron outsidethe classically
allowed region is 36%. This indicates that our modelling of *°C exhibits a
halo structure. Howeer, it is not as extendedasthat obtained for the 'Be
ground state (for 'Be, the rms radius is 7.035fm, and the probability of
presencebeyond the classicalturning point is 46%). This is in agreemenh
with the experimertal results which predict a smaller halo structure in °C
than in 1Be [Sau0Q Oza01.
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6.1.2 Pro jectile-target potentials

In order to simulate the nuclear interaction betweenthe projectile and the
target, we make useof optical potertials, asin the study of the 1Be breakup.
As mertioned above, the breakup crosssectionof **C hasbeenmeasuredby
Nakamura et al. [Nak03. This experimert hasbeencarried out at an energy
of 68A MeV using a ?°®Pb target. With the aim of comparing our results
with thesedata, we perform our ewlution calculation using the sameenergy
and target.

Asin Sec5.1.2,we considerfor the neutron-targetinteraction the parame-
trisation of Becdetti and GreenleedBG69] with an energyof 68 MeV. The
14C-298pp gptical potertial, likethe 1°Be-2%®Pb one(seeSec.5.1.2for details),
is adapted from the -2%8Pb potertial proposedby Bonin et al. [Bon83.
Howewer, sincethe choice of the optical potertials doesnot in uence signi -
cartly our results (seeSec.5.2.5), we only considerthe rst parametrisation
of Ref. [Bon8Y5. The valuesof the parametersfor those potertials are listed
in Table 6.3.

corf \/ W Rgr R, ar q Rc
4C 70.0 58.9 7.67 7.42 1.040 1.000 5.92
n 29.46 134 6.93 7.47 0.75 0.58 -

Table 6.3: Parametersof the n-2Pb [BG69] and 4C-?°8Pb [Bon89 optical
potertials (seeSec.3.2 for the detailed expressionof the parametrisation).
Depths are expressedn MeV while radii and di usenessesare in fm. The
valuesWp, Rp and ap are not displayed sinceWp = 0 in all cases.

6.2 Evolution calculation

In this section,we preser and discussthe results of our model obtained for
a 15C projectile and a 2°®Pb target. We rst illustrate the time ewlution of
the projectile wave function computedwith our method. Then, we compare
the results of this method with those obtained at the rst-order approxima-
tion. After this analysis,we detail the physical and numerical conditions of
our calculations. The results of these calculations are then preserted and
analysed. This analysis includes, among other things, a comparisonwith
the experimertal data measuredby Nakamura et al. [Nak03. Finally, the
in uence of the Pauli forbidden states upon the wave padket ewlution is
studied.

6.2.1 Time evolution of the pro jectile wave function

In Sec.5.2.1, we have illustrated our time ewlution calculation for a 'Be
projectile impinging on a 2%8Pb target. With the aim of emphasisingthe
similarities and di erences between!!Be and '°C, we perform the samekind
of calculation. The ewlution of the °C wave function is computed from
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an initial wave function ( r;tj,) correspndingto the physical ground state
1512 1=2. We considera 2%Pb target. The initial velocity is chosenequal
to v = 0:36c which correspnds to the 68A MeV experimertal energy of
Ref. [Nak03. The calculation is performed using a straight-line trajectory
with impact parameterb = 30 fm. In Fig. 6.1, the time-dependert wave
function of 1°C is projected onto three di erent spin-angular states. The
rst oneis that of the initial bound state (s1=2 1=2), the secondthat of
the excited state (d5=2 3=2), and the third that of the largestcortribution
to the breakup crosssection (p3=2 3=2). Thesecomponerts of the wave
function are displayed from the initial time t;, = 20 h/MeV to the nal
time to,: = 20h/MeV at intervals of 5 h/MeV.

The results of this calculation are quite similar to those obtained with a
11Be projectile (seeSec.5.2.1). The initial bound state is not signi cantly
modi ed beforethe time of closestapproad t = 0. At that time, the wave
function is more deeplyaltered: the behaviour of the s1=2 1=2 partial wave
is strongly a ected at large distances,while signi cant componerts appear
in the other partial waves. At positive times, a long tail, correspnding to
the breakup componert, dewelopsrather quickly towards large distancesin
all partial waves.

The main di erence betweenthis time ewlution and that of the *!Be lies
in the population of the excited state. In Sec.5.2.1, we have indeed seen
that during its interaction with the target, the Op1=2 excited state of 'Be is
signi cantly populated. This wasrevealedby the appearanceof a peak near
the origin in the correspnding partial wave. In the presen ewlution, the
samekind of peak, correspnding to the 0d5=2 excited state of °C, dewelops
in the d5=2 3=2 partial wave (seeFig. 6.1 (b)). Howewer, its amplitude is
two order of magnitude lower than that obsenedin Fig. 5.1 (b). This means
that the excitation processis much lessprobable for the **C nucleusthan
for 1Be. This hastwo causes. The rst oneis that the excitation of °C
requires twice as much energythan that of !Be: 740 keV in **C for only
320keV in 'Be (seeTables6.1 and 5.1). The secondoneis that only E2
transitions are allowed betweenthe 1s1=2 ground state and the 0d5=2 excited
state of °C (seeformula (3.62) with 1o = 0 and | = 2), while the excitation
of 1Be is governed by the more probable E1 transitions (see Sec.5.2.2).
The combination of both e ects explain the rather low population of the *°C
excited state during its interaction with 2%¢Pb.

It shouldbe notedthat a smallpeakcanalsobeobsenedin the p3=2 3=2
partial wave. It correspndsto the Op3=2 unphysical bound state obtained
with our **C-n potential. This meansthat, asfor 1*Be, the forbidden statesof
15C are populated during the collision. Howewer, the amplitude of this peak
is lower than that appearingin the p3=2 3=2 partial wave of the !Be wave
function (seeFig. 5.1 (c)). This suggestghat the Pauli forbidden statesare
lesspopulated during the ewlution of *>C than that of 1'Be. The in uence
of these states upon the time ewlution of the projectile wave-function will
be analysedin more details in Sec.6.2.5.
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Figure 6.1: Time ewlution of the wave function of a *>C projectile impinging
on a ?%8pPp target for v = 0:36c and b= 30fm. The moduli of the s1=2 1=2
(@), d5=2 3=2(b) andp3=2 3=2(c) partial wavesobtained with the initial
1s1=2 1=2 bound state are plotted.
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6.2.2 Comparison with the rst-order appro ximation

In the previouschapter, we comparedour ewlution calculationwith the rst-
order appraximation consideringa 'Be projectile. This analysis revealed
that ewven at high velocities and high impact parameters,s and d partial
waves of the 11Be wave function are signi cantly populated. This di erence
with the rst-order appraximation wasunderstood asa high couplingbetween
cortinuum states.

In order to seewhether the samephenomenonoccursin the caseof 1°C,
we perform the samestudy for this projectile. In Fig. 6.2, we display the
ratio between the breakup probability dP,,=dE obtained with our model
(3.38) and its rst-order approximation dPf=dE computedfor a purely E1
Coulomb potential (3.67). This ratio is plotted asa function of the relative
energybetweenthe coreand the halo neutron after breakup. As in Sec.5.2.2,
the calculationsare worked out at three velocities (v = 0:25c, 0:3c and 0:35¢)
and four impact parameters(b= 40fm, 60 fm, 80 fm and 100fm).

The results we obtain for 1°C are quite similar to those computedwith a
11Be projectile (seeSec.5.2.2). The breakup probability calculatedwith our
ewlution method seemsndeedto convergetowardsits rst-order appraxima-
tion at high velocities and large impact parameters. As in the 1Be breakup
calculation this corvergenceis rather slov. This suggestghat, in this case
too, higher-order e ects remain signi cant even at high impact parameters
and high velocities.

In orderto con rm this analysis,let us have a look at the cortributions
of the di erent partial wavesto the breakup probability. In Fig. 6.3, we have
displayed the cortributions of the s, p and d partial waves obtained at the
threedi erent velocitieswith animpact parameterb= 100fm. Asin Fig. 6.2,
the probabilities are scaledby the rst-order approximation dPE!=dE. The
cortribution of the f waves has not been pictured sinceit doesnot exceed
3% of the total breakup probability.

Theseresultsshow that the major cortribution to the breakupprobability
is dueto the p partial waves. Howewer, asseenin Sec.5.2.2,the cortributions
of s and d waves are, albeit small, still signi cant even at high velccities.
In order to rule out the possibility that this e ect might be due to higher
multip oles,we have performedan ewlution calculation consideringonly the
rst multip ole of the time-dependent potertial (5.1). The results of this
calculation are almost idertical to those obtained when all the multip oles
areincluded. The maximum relative di erence betweenthem is indeedlower
than 2%.

It seemghereforethat, asin the caseof 'Be, the signi cant populations
of the s and d wavesresult from higher-orderterms. As seenin Sec.5.2.2,
the second-orderE 1-E 1 term is most likely the major cortribution to that
e ect. It indeedincludesthe coupling betweenthe p wavesand the s and d
onesafter the breakup of the projectile.

In the previouschapter, we have completedthis analysisby comparingthe
excitation probability obtained using our model with that computed at the
rst-order approximation. This comparisonshoved usthat in this caseboth
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Figure 6.3: Contributions of the s, p and d wavesto the total breakup prob-
ability. Values,scaledby dP£E=dE, are plotted asa function of the energy
Calculationshave beenperformedat b= 100fm for three di erent velocities.

calculations are in very good agreemenh at high impact parameter (seeTa-

ble 5.4). The contrast betweenthis result and that obtained for the breakup

probabilities has beenunderstood as a smallerin uence of the higher-order
terms upon the excitation processthan upon the breakup reaction. It seems
therefore that sud a study provides a useful test of our method sincethe

e ects of the higher-orderterms are naturally diminished in this process.

In order to completethe comparisonbetweenour method and the rst-
order approximation for a *C projectile, we perform the sameanalysis of
the excitation probability. The excitation probability Pogs-, towards the
single excited state of °C is computed from the output of our ewlution
calculations. The values obtained with an initial velocity v = 0:35 are
displayed in the rst row of Table 6.4 for di erent impact parameters. It
should be borne in mind that in this case,only E2 transitions are allowed
betweenthe 1s1=2 ground state and the d05=2 excited state. This means
that the rst-order approximation of this probability P§Z_, is obtained using
the secondmultip ole of the projectile-target interaction (3.59).

b=40fm b=60fm b= 80fm
Pogs=z 3.3210 7 2.31108 2510°
P&2, 553108 1.1510°% 3.710°

Table 6.4: Comparisonbetweenthe excitation probability obtained with our
method Pggs=; and its rst-order appraximation PEZ_,.

The comparisonbetweenthesevaluesand those of Table 5.4 give rise to
two commenaries. The rst oneis that the excitation probabilities of 1°C
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are much smallerthan thoseof 'Be. The valuesof Table 6.4 are indeedfour
to v eordersof magnitudelower than thoseof Table5.4. This result, already
obsenedin Sec.6.2.1,is due to the combination of both a higher excitation
energy and a higher multip olarity of the transition from the ground state
towards the excited state.

The secondcommernary raised by this comparisonis that the discrep-
ancy betweenour method and the rst-order approximation is much larger
for 15C than for 11Be. Following our rst idea, this would meanthat the low
convergenceof our resultstowards the rst-order approximation obsened in
Fig. 6.2is not related only to higher-ordere ects. Howeer, this discrepancy
is most likely due to the very small value of the excitation probability men-
tioned above. It might therefore merely indicate that we cannot read an
accuracyof 10 ° on the excitation probability with our algorithm.

The results of this comparisonbetween our method and the rst-order
appraximation seemto con rm that s and d wavessigni cantly cortribute to
the breakup probability even at high impact parametersand high velocities.
This suggestghat higher-orderterms, and particularly the second-ordeiE 1-
E 1 cortribution, play asigni cant role in the Coulomb breakupof halo nuclei.
As alreadymertioned in Sec.5.2.2,this e ect might be seenasresulting from
the halo structure or the low binding energyof the systemwe consider.

6.2.3 Conditions of the calculation

The breakupof >C on 2°Ph hasbeenstudied experimertally by Nakamura et
al. The measuredoreakupcrosssectionhasnot beenpublishedyet. Howewer,
preliminaries data can be found in Ref. [Nak03.

In order to compareour theoretical model with this recent experimert,
we perform an ewlution calculation for a *>C projectile impinging upon a
208pp target. The relative velocity is chosenequalto v = 0:36¢ corresmnding
to the experimertal 68A MeV kinetic energy(5.2).

As for 'Be, the nuclearinteraction betweenthe projectile and the target
is simulated usingan optical potertial. In Sec.5.2.5,we sav that the choiceof
this potential haslittle e ect upon our calculations. Making useof this result,
we chooseto use only one #C-2°8Pp potential and one n-22Pb potertial.
Their parametersare givenin Table 6.3.

In Sec.5.2.6, we analysedthe in uence of the choice of the trajectory
upon the ewlution calculations. We found out that straight lines could be
usedinsteadof hyperbolaswithout any signi cant modi cation of our results.
Following this, we perform our calculations for 1°C using only straight-line
trajectories.

15C and !Be, although rather dierent physically speaking (di erent
binding energy bound spectrum, etc.), are quite similar from a numerical
point of view. The study of the corvergenceof the schemefor °C leadsin-
deedto nearly the samenumerical parametersasthoseusedin the calculation
involving a 'Be projectile. Theseare displayed in Table 6.5 as a function
of the impact parameter. Besidesthose parameters,it should be noted that
the wave function is discretisedover the radial quasiuniform meshobtained
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b< 30 30< b<50 50< b< 100 100< b< 200
hp 1 1 1 2
N, N 6, 11 4,7 3,5 3,5
rn,, Nr | 800,1000 800,800 800, 800 600, 600

Table 6.5: Valuesof the numerical parametersusedin the calculation of the

15C breakup on ?°8Pb with an initial velocity v = 0:36c which corresmpnds
to the 68A MeV energyof experimert [Nak03 (b, h, and ry, are expressed
in fm).

with the g, distribution (seeSec.4.2.3)usinga = 5 and xo = 0:6. In this
casetoo, the time interval is chosenequalto [ 20 h/MeV, 20h/MeV], and
the time stepto t = 0:02h/MeV. As in the study of the 'Be breakup, the
15C-208pp interaction is purely Coulombic above b= 30 fm

We seethat the main di erence betweenthis set of parametersand that
usedfor the study of 1'Be breakup (seeTable 5.5) is the fact that the impact
parameterinterval canbe limited to 200fm. With the aim of illustrating this,
we have represeted in Fig. 6.4the cortributions to the breakup crosssection
of the di erent impact-parameterintervals of Table 6.5. For comparison,the
total crosssectionis pictured aswell.

0.6 T T T
total ——
0.5F 8< b< 30 —
30< b< 50 ——-
0.4 50< b< 100 —-—
100< b< 200----

d p=dE (b/MeV)

0.3F
0.2F
01k/ "
R o —_—
RS T — e — T —
0 Z _ = b— o 1
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Figure 6.4: Cornvergenceof the ewlution calculation with respect to the
impact parameter upper bound. The total breakup cross section as well
as the cortributions of eat of the b intervals consideredin Table 6.5 are
represered as a function of the energy

As for 1'Be (seeFig. 5.6), we seethat the major cortribution to the
breakup crosssectionis due to the small impact parameters. Howeer, the
cornvergencen bis much fasterin this casethan for 'Be, and we seethat it
is achieved at b= 200fm. This is mainly due to the larger binding energy
of 15C.
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Figure 6.5: Breakup crosssection (in b/MeV) of °C on ?°Pb at 68A MeV
asa function of the relative energybetweenthe projectile fragmers. Calcu-
lations have beenperformedwith the nuclear optical potertial of Table 6.3
(full line) and using a purely Coulombic potential with an impact parameter
cuto by, = 125fm (dotted line). The crosssectioncomputedfor b> 30fm
(dashedline) is alsodisplayed. The preliminary experimertal data of [Nak03
are represeited by the open diamonds (total crosssection)and open circles
(b> 30fm).

6.2.4 Results of the time-ev olution calculation

The breakup cross section obtained from our ewlution calculation is dis-
playedin Fig. 6.5(full line). The preliminary experimertal data of Ref.[Nak03
are alsorepreseted (open diamonds). We seethat our result agreesfairly
well with the experimertal measuremets. It seemdowever that the theoret-
ical valuesslightly overestimatethe data of Nakamura et al. near 0.5 MeV.

When we comparetheseresults with those obtained in Sec.5.2.4,we see
that the breakupcrosssectionof 1°C is appraximately 4 times lower than that
of !Be. This is seenas resulting from the larger binding energyand/or the
smallerhalo structure of the former comparedwith the latter (seeSec.6.1.1).

We have also pictured the crosssection computed for trajectories char-
acterisedby impact parametersb > 30 fm (dashedline). Thesevalueshave
beencalculated so asto compareour model with the correspnding exper-
imental data of Ref. [NakO3 (open circles). In this case,the result of our
calculation seemdo slightly overestimatethe valuesmeasuredoy Nakamura
et al. As for the total crosssection, this discrepancyis maximum at low
energy

This comparisonshaws that our description of °C leadsto theoretical
breakup crosssectionswhich are in fair agreemehn with the experimenal
data. This suggestshat the con guration in which the >C ground state is
seenas a s1=2 neutron looselybound to a *C corein its 0" ground state is
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dominart in the *°C structure. This [0* s1=2]con guration shouldtherefore
correspnd to a spectroscopicfactor rather closeto unity. The fact that the
results of our calculation are above the experimertal valuesfor b > 30 fm
seemsto indicate the need of a spectroscopicfactor slightly smaller than
unity.

This agreeswith the preliminary analysisof this experiment performed
by Nakamura et al. As for 1!Be, they have useda rst order appraximation
to extract the spectroscopicfactor correspnding to the [0*  s1=2] con g-
uration from the crosssectionsmeasuredfor b> 30 fm. They have found a
spectroscopicfactor of about 0.74[Nak03. Fig. 6.6 illustrates the validity
of the rst-order appraximation in this case. The crosssection obtained at
the rst-order (3.68) (dotted line) is indeedvery closeto that computedfrom
our calculations(dashedline). In this case,the experimental data are rather
well reproducedby the rst-order calculation multiplied by 0.74(dash-dotted
line). This seemdo con rm the spectroscopicfactor deducedby Nakamura
et al. Howewer, sincethe data presened in Ref. [Nak03 are still preliminary,
precisestatemerns about this value have to wait for publication.

Evolution calculationb> 30fm ——-
e First-order ------
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Figure 6.6: Comparisonbetweenthe ewlution calculation (dashedline) and
the rst-order approximation (dotted line) for b> 30 fm. The latter is also
represeted multiplied by the spectroscopicfactor 0.74 obtained by Naka-
mura et al. from the analysis of their experimernt [NakO3 Nak03W (dash-
dotted line). For comparisontheseexperimertal data are plotted aswell.

It should be noted that asfor 'Be, the exact value of the spectroscopic
factor is still subject to controversy For example, Data Pramanik et al.
[Dat03] derived spectroscopicfactor of 0:97 0:08 from their measuremen of
the 1°C Coulomb breakup crosssectionperformedat high energy In [Sau00],
Sauwan et al. alsodeduceda large admixture of the [0" s1=2] con guration.
Using a Glauber-like model, they found a value of 0.83. Howewer, our result,
as well as the experimertal onesmertioned above, contrast with the 0.49
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spectroscopicfactor obtained by Ozawa et al. This rather low value has
beenobtained from their analysisof the interaction crosssectionof *°C on a
carbon target [OzaO].

With the aim of conrming the e ect of the nuclear potentials upon
our results obsened in Sec.5.2.5, we perform a calculation simulating the
projectile-target interaction with a purely Coulonbic potential. The breakup
crosssectionis plotted in Fig. 6.5 as a dotted line. The impact parameter
cuto is chosenequal to b, = 125 fm to reproduce the breakup cross
section computed with the optical potential in the peak region. We see,
howewer, that the breakup crosssectionis underestimatedat high energy
with this choice of b,,. This meansthat, as for 'Be, the optimal cuto
should vary with the energy We have seenin Chapter 4 that the inclusion
of optical potentials is rather straightforward in our model. Moreover, the
choice of thesepotentials doesnot seemsigni cantly to in uence our results
(seeSec.5.2.5). Therefore, it is logical to usethem to simulate the nuclear
interaction betweenthe projectile and the target instead of a mere impact
parameter cuto .

In orderto completethis study, let us have a look at the excitation cross
section ogs— Of °C. Fig. 6.7 displays the excitation probability computed
with the optical potential (full line) and that obtainedwith a purely Coulom-
bic projectile-target interaction. We seethat asobsened in Sec.5.2.5, the
di erence betweenboth calculations vanishesabove b = 20 25fm. This
di erence consistsof a signi cant enhancemenh of the excitation probabil-
ity near b = 10 fm when the optical potential is used. This e ect is very
di erent from that obsened for 1'Be. We indeed saw that for this projec-
tile, the probabilities obtained with optical potertials are smallerthan those
computedwith a Coulomb potential at all impact parameters.
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Figure 6.7: Inelastic probability of °C asa function of the impact parameter
b. Resultsare obtained with the optical potertial of Table 6.3 (full line) and
a purely Coulombic interaction (dotted line) between!®C and 2°¢Pb.
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Another di erence betweenboth nuclei is that the inelastic probabilities
are smaller for *°C than for 'Be. As mertioned above, this is mainly due
to the fact that the dominart transition correspndsto an E2 multip ole for
15C while it is E1 for 1Be.

We also seethat the °C excitation probabilities decreasemuch faster
with b. This is due to the larger excitation energy of this nucleus. From
the rst-order approximation (3.57), we know that the decreasds roughly
proportional to exp( 2 E=hv) where E is the excitation energy This
explains why the probabilities are still signi cant at b = 300 fm for 11Be,
while they are almost negligibleat b= 30 fm for **C.

The excitation crosssectionis obtainedby integrating the excitation prob-
abilities over b (3.41). The valuewe obtain whenthe optical potenrtial is taken
into accour is 0.0164b. The crosssectioncomputed using a pure Coulomb
potential is only 4.5 10 # b with a cuto at by, = 125 fm. This means
that the value obtained with the nuclear interaction cannot be reproduced
by a physically acceptableimpact parameter cuto . Unfortunately, the ex-
citation crosssectionof 1°C has not beenmeasuredyet. It would indeedbe
interesting to know whether the prediction of our model is accurate.

6.2.5 Inuence of the Pauli forbidden states

In Sec.5.2.7,we have seenthat the presenceof the Pauli-forbidden statesin
the Vs potential doesnot signi cantly in uence the breakup of the !Be. In
order to seewhether it is still the casehere, we perform the samestudy for
150.

The Woods-Saxonpotential (WSP) which models **C includesthree un-
physical states (see caption of Table 6.1). Using the transformations de-
scribed in Sec. 3.1.3, we construct a supersymmetric equivalert potertial
(SEP). This potertial exhibits the same scattering properties and bound
spectrum asthe initial WSP but for the three Pauli-forbidden states, which
have beenremoved. In orderto study the in uence of theseforbidden states
upon our results, we perform, asin Sec.5.2.7, an ewlution calculation us-
ing this SEP instead of the initial WSP. The breakup crosssectionobtained
from this calculation is pictured in Fig. 6.8 (dotted line). For comparison,
the crosssectioncomputedusingthe WSP is alsorepreseted (full line). The
cortributions of the three dominart |j partial wavesare displayed as well.

As for 1Be, we seethat the modi cation of the breakup crosssection
induced by the removal of the unphysical bound statesis rather small. The
crosssection computed using the SEP is indeed only 2% larger than that
obtained with the initial WSP in the peak region. This slight increaseis
due to the rise of the p wavescortributions. This cortrasts with the results
obtained for !'Be. We have indeedseenthat the elimination of the forbidden
states of 'Be leadsto an increaseof the cortribution of the p3=2 partial
waves,while it induced a reduction of that of the p1l=2 waves. The in uence
of this elimination onto the cortribution of the s1=2 partial wavesis the same
in both cases:its value computedwith the SEP is identical to that obtained
with the WSP.
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Figure 6.8: In uence of the Pauli forbidden statesof the 1*C-n potertial onto
the breakup crosssection. The dominant s1=2, p1=2 and p3=2 componers
are indicated separately

To understandthesee ects, we calculatethe breakup crosssectionat the
rst-order approximation (3.68) usingboth the WSP and its supersymmetric
partner. The impact-parametercuto is chosenequalto b, = 125 fm, as
in Sec.6.2.4. The results of thesecalculationsare displayedin Fig. 6.9. Both
the p3=2 and p1=2 cortributions are displayed aswell.

This shavs usthat, asfor 1'Be, the in uence of the Pauli-forbidden states
upon the breakup of °C can be qualitatively understood at the rst-order
approximation. Indeed, the small increaseof the cortributions of both the
p3=2 and p1=2 partial wavesis rather well reproducedin this approximation.
Using the sameargumerts asin Sec.5.2.7,we concludethat theseincreases
are due to the removal of one bound state in ead of thesewaves.

In orderto completethis analysis,we study the in uence of the forbidden
bound states upon the excitation process. The inelastic probabilities Pggs=,
obtained using both the WSP and the SEP are depictedin Fig. 6.10as a
function of b. As for 1!Be, we seethat the removal of these states a ects
more deeply the excitation of °C than its breakup. The excitation cross
sectionobtained using the SEP is equalto 2.1810 2 b, while that computed
with the WSP is of 1.6410 2 b. As for 1Be, this substartial increaseof the
transition probability can be understood in the rst-order approximation.
The removal of one node from the 1s1=2 state in a transition towards the
no-node 0d5=2 state leadsto an increaseof the radial integral appearingin
expression(3.57).

In this section,we have thus seenthat, asfor 'Be, the presenceof Pauli
forbidden statesin the Vi potential describingthe projectile doesnot mod-
ify signi cantly the breakup process. This result con rms that the use of
deeppotential is fully justied in sud calculations. The inelastic excitation,
however, seemgo be more strongly a ected by the presenceof thesestates.
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Figure 6.9: Analysis at the rst-order perturbation approximation of the
in uence of the Pauli forbidden statesonto the breakup crosssectionof *°C
on 2%8pPp, Both p1=2 and p3=2 componerts are indicated separately
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Figure 6.10: In uence of the Pauli forbidden statesupon the inelasticprocess.
The excitation probability to the 0d5=2 excited state of *°C is plotted as a
function of b. Calculations have been performed with both the WSP (full
line) and the SEP (dotted line).



Chapter 7

A charged case: B

In this chapter, we turn to the study of the Coulomb breakup of B. As seen
in Chapter 1, this nucleusis a candidate one-proton halo nucleus.

The Coulonmb breakup of 8B has beenextensiwely studied both theoreti-
cally [EB96, TWB97, TNTO1, MTTO02, Mor01] and experimertally [Mot94,
Dav01]. It is thereforeinteresting to analysethe results of our calculations
with regardto thesepreviousresults.

Besidesthe fact that this reaction can provide information about the
possiblehalo structure of 8B, the Coulomb breakup of this nucleusarouses
great interest becauseof its astrophysical application. It is indeed usedto
simulate the inversereaction of the radiative capture of oneproton by a 'Be:
Be(p, )®B.

This capture is one of the nuclear reactionsthat take placein the sun.
An accuratevalue of its crosssectionis thereforerequiredin order to obtain
an accurate solar model. It has been calculated using a microscopicmodel
by Descouemort and Baye [DB94]. Unfortunately, the direct measuremeh
of this crosssection at the (very) low solar energiesis very dicult due
to the Coulomb repulsion betweenthe proton and the 'Be (seee.g. Refs.
[HamO031, Jun02] for recen measuremets). It has been proposedthat the
study of the inversereaction (simulated by the 8B Coulomb breakup) could
provide information about this radiative capture reaction (see Ref. [BR96]
for a review). Howewer, this meansthat the Coulonmb breakup of 8B must
be very well understood. This explainsthe numerouscurrent studieson the
subject.

In the rst sectionof this chapter, the theoretical model of the 8B nucleus
is detailed. This sectionalsocontains the descriptionof the optical potentials
usedto simulate the nuclearinteraction betweenthe projectile and the target.
The secondsectionexaminesthe results obtained with our model, and their
comparisonwith experimertal data.

123
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J  Eexp (MeV) | nlj Ewn (MeV)
2" -0.137 Op3=2 -0.1373

Table 7.1: Experimertal bound-state energy (Eeyp), and quartum numbers
J of the 8B [Ajz88] (left part). The theoretical energy(E) and quantum
numbersnlj obtainedwith the parametersof Table 7.2 are alsolisted (right-
hand side). The singleforbidden state obtained with this potential is a 0s1=2
state at -14.86MeV.

7.1 Theoretical model

7.1.1 Description of 8B

The bound spectrum of 8B comprisesonly one state (seeleft-hand side of
Table 7.1). This groundstateisaJ = 2' state, which lies at solely137keV
from the one-neutronthreshold [Ajz88]. It is this very low binding energy
that led physiciststo suspect a one-proton halo in this nucleus. Howeer,
this structure is not obvious from the microscopiccalculation performedin
Ref. [BDT94]. Newertheless,in the presen study, asin other calculations of
the breakup of 8B [EB96, TWB97, TNT01, MTT02, Mor01], this nucleusis
seenas a proton looselybound to a ’Be core.

This nucleusis therefore seenas a 'Be corein its % ground state sur-
roundedby alooselybound p3=2 proton. As explainedin Sec.3.1.1,the spin
of the coreis not taken into accour in our calculation. In this model it is
thereforeassumedto be nil.

This two-body structure is modeled, as explained in Sec.3.1.1, using
a potential with a Woods-Saxonform factor including a spin-orbit coupling
term. Table7.2displays the valuesof the parametersusedin this case.These
valuesare adapted from Ref. [MTT02] (the potential usedin this reference
is in fact a simplied version of the model usedin [EB96]). It should be
noted that, unlike in the previous casesthe depth of the certral term V, is
the samefor all partial waves.

Vi (MeV) Vs (MeV fm?) a(fm) Rq (MeV)
44.97 17.60 0.52 2.391

Table 7.2: Parametersof the "Be-p potential (seeSec.3.1.1for the detailed
expressionof the parametrisation).

The ground state energyobtained with this potential is givenin the right-
hand sideof Table7.1. Besideghis physical state, the potertial includesonly
one forbidden state (seethe caption of Table 7.1). It should be noted that,
asthe spin of the coreis neglected the 0", 1* and 3" statescorrespndingto
the coupling of this spin and the 3=2 angular momertum of the halo proton
are degeneratewith the 2° ground state. This meansthat, in this model,
the resonan statesof 8B are not reproduced (seeRef. [Ajz88]).
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Usingthis potential, the rms radius of the two-body structure in its phys-
ical ground state is equalto 4.233fm. The probability of presenceof the
proton beyond the classicalturning point is of 39%. Thesevalues, though
large when comparedto the range of the nuclear potential, are smallerthan
thoseobtained for 11Be (seeSec.5.1.1). This is mainly dueto the presenceof
a repulsive Coulomb term in the "Be-p potential (cf Sec.1.3). Newertheless,
the probability of presenceof the proton outside the potential well is similar
to that obtained for 1°C. This suggestghat, asfor *°C, our modelling of 8B
leadsto a smaller halo structure than for 1Be.

7.1.2 Pro jectile-target potentials

In order to simulate the interaction betweenthe projectile componerts and
the target, we useoptical potentials, as explainedin Sec.3.2. In this case,
following Mortimer et al. [MTT02], we simulate the "Be-?®Pb interaction
by using of the potertial proposedby Cook [Coo82. This potertial hasin
fact beendeweloped for a ’Li projectile. Since’Li is the mirror nucleus of
’Be, we presumethat this potertial, with a modi ed Coulomb term, is well
suited to model the interaction betweenthe "Be core and the ?°8Pb target.
As for the neutron-halo cases,we use the Becdetti and Greenleesoptical
potential [BG69]to simulate the p-2°Pb nuclear interaction. The value of
the energyhasbeenchosenequalto 44 MeV soasto comparethe results of
our calculationswith the experimertal data of Davids et al. [Dav01].

The valuesof the parametersof the correspnding potentials are displayed
in Table 7.3. It should be noted that, unlike the n-2°8Pb potertial (see
Sec.5.1.2),the p-2°®Pb optical potential includesan imaginary surfaceterm.

corf \% W Wp Rr R = Rp aR a = ap Rc
B 1142 944 O 7.62 10.30 0.853 0.809 7.70
p 50.5 6.98 13.35 6.93 7.82 0.75 0.66 7.41

Table 7.3: Parametersof the p-?°8Pb [BG69] and ‘Be-?°8Pb [Co087 optical
potertials (seeSec.3.2 for the detailed expressionof the parametrisation).
Depths are expressedn MeV while radii and di usenessesare in fm.

7.2 Evolution -calculation

7.2.1 Conditions of the calculation

As already mertioned, the Coulomb breakup of 8B has beenstudied experi-
mertally by Davids et al. [Dav01]. They useda 44A MeV 8B beamimpinging
upon a ?%8Pp target.

In order to compare our results with these experimertal data and to
the related theoretical studies [Mor01, MTTO02], we perform ewlution cal-
culations using the potentials descriked in the previous sections. As in the
previouscasesthe nuclear potential is negligiblefor b> 30fm. The relative
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b< 14 14< b< 30 30<b<50 50<b<70

hp 1 2 2 2
N, N 8,15 8,15 7,13 6,11
rn,» Ny 800,800 800, 800 800,800 700,700

70< b< 90 90< b< 150 150< b< 210
hp 2 4 4
N, N 5,9 4,7 3,5
rn, s Ni 700,700 600, 600 400,400

Table 7.4: Valuesof the numerical parametersusedin the calculation of the
8B breakup on 2°®Pb with an initial velocity v = 0:3c which correspndsto
the 44A MeV energyof experimert [Dav0l] (b, h, and ry, are expressedn
fm).

motion betweenthe 8B projectile and the 2°8Pb target is modelled, herealso,
by straight-line trajectories. The relative velocity is chosenequalto v = 0:3c.
This value correspndsto the 44A MeV kinetic energyof Ref. [Dav0l] (see
Eq. (5.2)).

As for 1Be and °C, the radial variable is discretisedover the quasiuni-
form grid obtained with the g, distribution consideringa = 5 and xo = 0:6
(seeSec.4.2.3). The calculations are performedfrom tj, = 20 h/MeV to
towt = 20 h/MeV with atime step t = 0:02h/MeV (seeSec.4.3.6). The
other numerical parametersvary with the impact parameterb. Their values
are summarisedin Table 7.4.

The major di erence betweenthe presen convergenceanalysisand that
performedin the previous casedlies in the valuesof the number of angular
functions N and N. . We indeedseethat in this case,thesevaluesare sub-
startially larger than thoseusedfor the study of 'Be and °C (seeSec.5.2.3
and Sec.6.2.3respectively). Furthermore, the decreaseof N and N. with
b is much slower in this study. This meansthat, during the ewlution calcu-
lation, partial wavesof B corresmnding to a high orbital momertum | are
signi cantly populated, even at high impact parameters.

Sincethe nuclearpotertial is negligibleabove b> 30fm, this e ect cannot
berelatedto the optical potentials detailedin Sec.7.1.2. Moreover, the same
parametersare obtained when no nuclear interaction is consideredbetween
the projectile and the target.

In order to explain this e ect, let us have a look at the results obtained
at the rst-order approximation (see Sec.3.4.3). From Egs. (3.56) and
(3.59), we seethat the dierent multipolesE cortribute to the breakup
crosssection proportionally to the squareof the e ective chargee (3.60).
From this expression,we seethat consideringa charged fragmen leadsto
an increaseof e, while e; decreases.It seemsthereforethat this e ect can
be understood as a substartial cortribution of the E2 transitions in this
reaction. This con rms the previous analyses[EB96, MTT02] which also
found that E 2 transitions play a signi cant role in the Coulomb breakup of
8B.
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Figure 7.1: Breakup crosssection(in b/MeV) of 8B on2%Pb at 44A MeV asa
function of the relative energybetweenthe projectile fragmerts. Calculations
have been performed with the nuclear optical potential of Table 7.3 (full
line) and using a purely Coulonmb potential with an impact parametercuto
bnin = 12 fm (dotted line). Experimertal data are from Ref. [Mot94].

Since these high valuesof N and N. lead to a signi cant increaseof
both the computational time and the required memory space,we decidedto
diminish the number of calculation by increasinghy,. This explainswhy the
impact parameter step is chosenlarger in this case.

7.2.2 Total breakup cross section

Within the calculation conditions descrited in the previoussection,we have
performed ewlution calculations. The breakup crosssection obtained from
the results of these calculationsis depictedin Fig. 7.1 as a function of the
relative energybetweenthe proton and the ’Be coreafter breakup. The cross
sectionobtained using the optical potertials detailed in Sec.7.1.2is plotted
asa full line. The dotted line represeis the crosssectioncomputedwith a
purely Coulomb interaction betweenthe projectile and the target. In that
case,the nuclear interaction is simulated by an impact parametercuto at
bmin = 12 fm.

Unfortunately, these values have not been measuredby Davids et al.
[Dav0l]. In order to compareour calculations with experimertal data, we
displayedthe breakup crosssectionmeasuredby Motobayashiet al. [Mot94].
Their experimert hasbeenperformedfor a 8B projectile impinging on a 2°8Pb
target at an energyof 46.5A MeV. Sincethis energydoesnot strongly di er
from that of [Dav01], theseexperimertal data should be comparableto our
calculations.

We rstly seethat the magnitude of the crosssectionis the sameasthat
obtained for the *>C nucleus(seeSec.6.2.4). This is consisten with the fact
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that the nuclearmodel we considerfor both nucleileadsto a lesspronounced
halo structure than for !Be.

The comparisonof our calculations with the crosssection measuredby
Motobayashi et al. [Mot94] indicates that the agreemeh between theory
and experimert is lessgood in this casethan for 'Be and *°C (seeSec.5.2.4
and Sec.6.2.4). Sincethe decreaseof the experimertal crosssection with
the energy is faster than that obsened in our calculation, it seemsthat
a spectroscopicfactor may not be the only explanation of this discrepancy
The calculation of Esbensenand Bertsch [EB96] reproducesthe experimertal
data of Motobayashi et al. fairly well. It has beenperformedat the rst-
order approximation including both E1 and E 2 multip olesusing a channel-
dependen potential to model B. This potential, which takesinto accoun
the spin of the "Be core,enablesthem to reproducenot only the ground state
energybut alsothat of someresonan states. This suggestshat our simple
two-body modelling of 8B may not be su cien tly accurate.

It shouldbe noted that, unlikein the neutron-halocasesthe crosssection
computed with a purely Coulomb interaction is very closeto that obtained
usingthe nuclearoptical potentials. This meansthat in this case,an optimal
impact-parametercuto canbefound for all energies.In orderto understand
this, let ushave alook at the breakup probabilities obtainedwith and without
optical potentials. Fig. 7.2 displays the breakup probabilities computed at
three di erent energies E = 0:5 MeV, 1.0 MeV, and 1.5 MeV).

10 2 T T T T
Coulomb + Nuclear

8103 - L5 MeV Coulomb -+ -
S 610°F
Q
=
z 4103
o

2103 |

0
5 10 15 20 25 30
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Figure 7.2: In uence of the nuclearpotential upon the breakup probability of
8B on a 2%®Pb target. Calculations are performedwith the optical potentials
given in Table 7.3 (full lines), and with a purely Coulomb projectile-target
potential (dotted lines).

Theseresults are rather similar to those obtained for a 'Be projectile
(seeSec.5.2.5). Howewer, they di er in the relative position of the probabil-
ities obtained with the optical potertials and those obtained with a purely
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Coulomb interaction. For 'Be, we sav that the use of an optical potertial
can lead to a signi cant increaseof the breakup probability. This one can
thereforebe larger than that computedwith the purely Coulomb interaction
at someimpact parameters. We alsosaw that this behaviour is strongly en-
ergy dependern (seeFig. 5.9). On the other hand, we seethat, in this case,
the breakup probabilities obtained with the optical potertials are smaller
that those with the purely Coulomb interaction at all impact parameters,
and all energies.

This di erence explainswhy no optimal impact-parametercuto can be
found in the neutron-halo cases,while a cuto at by, = 12 fm givesvery
good results for B at all energies.

We saw that the increasemertioned above for the 'Be projectile is due
to the introduction of the nuclear interaction betweenits halo neutron and
the target. The fact that this e ect is not obsened in the presen casecan
thereforebe seenasdue to the Coulomb interaction betweenthe halo proton
and the 2%8Pb target. This interaction doesindeed hinder the e ects of the
nuclearinteraction, leadingto a minor e ect of the optical potertials.

7.2.3 Parallel momentum distribution

In the beginning of this chapter, we have seenthat one of the main interests
of the 8B Coulomb breakup is that it simulates the inversereaction of the
radiative capture ‘Be(p, )B. It has been proposed[BR96] that the cross
sectionof this radiative capture can be inferred from that of the 8B Coulomb
breakup. Howevwer, the di erent multip olesdo not cortribute with the same
amplitude in both reactions [EB96]. At the solar energies,the radiative
capture is indeed dominated by E 1 transitions while the Coulonb breakup
of 8B includesa signi cant E 2 cortribution, asseenin Sec.7.2.1. Moreover,
the higher-order e ects, as well as the nuclear interaction, have alsoto be
taken into accoun in the comparisonbetweenboth processes.

In order to extract information about the radiative capture from the
breakup reaction, it is of importance to disertangle thesedi erent e ects.
This meansthat an accuratedescription of the reaction is required.

Unfortunately, the breakup crosssectionis not well suited to gaugethe
relative amplitude of the E1 and E2 cortributions. Howewer, the parallel
momertum distribution is rather sensitive to the interferencebetweenboth
contributions [EB96]. The inclusion of the E 2 transitions leadsto an asym-
metric distribution that is not obtained if only the E1 cortribution is taken
into accourt [EB96]. Recertly, an experimert has beenconductedto mea-
surethis distribution [Dav0l]. It indeedpresens an asymmetry as predicted
theoretically. An asymmetry is also obtained in more recen theoretical cal-
culations [Mor01, MTTO02]. Howewer, none of them is able to fairly repro-
ducethe experimertal data. The rst-order calculations[Mor01] leadto an
overestimation of the asymmetry, while CDCC calculations[Mor01, MTTO02]
underestimatethis asymmetry.

In this section,we comparethe parallel momertum distribution obtained
from our ewlution calculationsto the experimertal data of Davids et al.
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[Dav0l]. For this, we make use of the formulae detailed in Sec.3.4. How-
ever, theseformulae give us the momertum distribution in the projectile rest
frame. In order to compareour valuesto the experimertal ones,we needto
compute the momertum distribution in the laboratory frame.

The momertum of the coreis given by

p.= hk+ m—PhK * e me F e (7.1)
where k is the wave vector of the relative motion of the core ¢ and the
fragmert f, K is the wave vector of the relative motion of the projectile
certre of massand the target T, and P is the total momerium of the
three-body system.

As mertioned earlier, we considerstraight-line trajectoriesto describethe
relative motion of the projectile and the target. For consistencewe make
the sameassumption here. That is to say that we presumethat both K
and P, are aligned with the z-axis. This axis is chosenalong the beam
direction. We alsotreat K asa constart (i.e. we neglectits variation due to
the energytransfer to the projectile intrinsic motion). This value is chosen
equalto its initial value

hK 1, = ﬁpm 1,; (7.2)
where the total momertum is obtained from the incident kinetic energyT;
using the classicalformula

q
Pot =  2Timp: (7.3)

Under theseassumptions,(7.1) can be rewritten as

p.= hk+ Pol; (7.4)
where
q
Po= ¢ oTimp: (7.5)
Mmp

From (3.54) and (7.4), we can obtain the distribution of the parallel mo-

mertum of the corein the laboratory frame:
|

d _ 1 d PO Pek .

dpc Pk) = & h - (7.6)
The measuremets of Davids et al. [Dav0l] are limited to the forward

angles. This meansthat they only consideredreactionsin which the coreis

emitted at a scattering angle belov somemaximum value . This puts

a constrairt on the perpendicular componert of p.. Therefore,the integral

over k, appearingin the calculation of the parallel momertum distribution

(3.51) is limited to a maximum value k3'®*. Considering(7.4), we obtain

KM = (P hky) tan( ™): (7.7)
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Figure 7.3: Parallel momertum distribution of the ‘Be core after breakup
of 44A MeV 8B on 2°8Pb. Experimertal data are from Ref. [Dav01]. The
theoretical curvesare translated in abscissao concurwith the experimert.

Sincethis expressiorhasbeenobtained consideringstraight-line trajectories,
the de ection of the projectile certre of massis not takeninto accour. This
approximation, though acceptableat largeimpact parameters,is not valid for
small impact parameters,wherethe curvature of the Rutherford trajectories
is signi cant. Howewer, in this preliminary analysisof our results, we make
this assumptionfor simplicity.

Parallel momertum distributions obtainedwith our ewolution calculations
are displayed in Fig. 7.3. They are computed for three di erent ’Be scat-
tering anglecuts: ™ = 1.5, 2.4, and 3:5. Theseanglescorrespnd to
the experimertal valuesof Ref. [Dav0l]. The theoretical distributions are
computed using either the optical potentials of Table 7.3 (full lines) or an
impact parametercuto at by, = 12 fm (dotted lines). The experimental
data are displayed as well.

It should be noted that the expressionof Py (7.5) doesnot take into ac-
court the energyand momertum transfersto the projectile intrinsic motion,
neither doesit accour for the relativistic e ects. Therefore,the momertum
distributions computedwith this value of Py (i.e. 2012MeV/ c) do not con-
cur with the experimertal ones.In orderto obtain distributions comparable
to the experimertal data, we chooseP, = 2030MeV/ ¢, which correspnds
more or lessto the certre of the experimental distributions.

The distributions we obtain qualitativ ely agreewith the experimertal re-
sults. That isto say that their widths and amplitudesare of the sameorder of
magnitude asthe experimertal ones. Howewer, the quality of this agreemen
is far from those obtained for 'Be and '°C (seeChapters5 and 6). Besides
the fact that the widths and amplitudes of the theoretical distributions are
not exactly thoseof the experimertal data, our calculationsfail to reproduce
the asymmetry of thesedata.
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This discrepancybetweentheory and experimert is most likely due to
the fact that the de ection of the projectile certre of massis not taken into
accour in our calculation of the parallel-momenum distribution. This is
suggestedby the increaseof the discrepancyat low scattering angle cuts.
For theseangles,neglectingthe curvature of the classicaltrajectory is indeed
more cortroversial.

This discrepancymight also be seenas due to our modelling of B. As
already mertioned, the 8B model we useis rather simple. It might therefore
not be su cien tly accuratefor these calculations. Howeer, in order to in-
vestigate further in this way, we rst have to eliminate the uncertainty due
to our inaccurate calculation of the distribution.

Furthermore, in orderto takethe de ection of the projectile certre of mass
fully into accoun, the calculations should be performed using Rutherford
trajectoriesinstead of straight lines. Howewer, the approximation of the hy-
perbolasby straight linesin the resolution of the time-dependen Sdredinger
equation should be lesscritical than in the calculation of p, assuggestedy
the analysisperformedin Sec.5.2.6.

It should be noted that, as in the computation of the breakup cross
section, the in uence of the nuclear optical potertials upon our results is
rather small. The distribution obtained with these potertials are slightly
more asymmetric than those computed with the purely Coulomb interac-
tion. Contrary to the results obtainedin Ref. [Mor01], it doesnot seemthat
the introduction of the nuclear interaction leadsto a substartial broaden-
ing of the distribution. Howewer, these e ects are completely negligible in
comparisonwith the discrepancybetweenour results and the experimertal
ones.

In this chapter, we have thus performed an analysis of the breakup of
8B on 2%8Pb using the method described in Chapters 3 and 4. This analysis
enabledusto con rm the signi cant role played by the E 2 transitions in this
reaction. We also saw that, unlike in the neutron halo cases,the nuclear
interaction betweenthe projectile and the target is fairly simulated by an
impact parametercuto . This is understood by the fact that the Coulomb
repulsionbetweenthe halo proton and the target hindersthe nucleare ects.
The comparisonbetweenour calculationsand the breakup crosssectionmea-
suredby Motobayashi et al. [Mot94] seemgo indicate that our model of B
is not accurate enough. Unfortunately, our analysisof the parallel momen-
tum distribution is too inaccurateto compareour results with the currertly
available experimertal data [Dav0l]. This meansthat no conclusionabout
the accuracyof our method and of our modelling of the 8B nucleuscan be
drawn. Howewer, it seemghat, even with our simple calculation of the par-
allel momertum distributions, we can reproducethe amplitude and width of
those distributions.



Conclusion

In this work, we have preserted a theoretical method for studying the Coulonb
breakup of one-rucleonhalo nuclei. This method is basedupon a semiclas-
sical appraximation in which the projectile is assumedto follow a classical
trajectory [AW75]. In this approximation, the projectile is seenasewlving in
atime-varying potential simulating its interaction with the target. This leads
to the resolution of a time-dependen Scredingerequationfor the projectile
wave function [KYS94, EBB95, MB99].

In our method, the halo nucleusis descriked, asin many current models,
with a two-body structure: a pointlik e nucleon linked to a pointlik e core.
The spin of the former is 1=2, while the latter is assumedo bein a 0" state.
In the presen state of our model, the interaction betweenthe two clusters
is modelled by a local potential. The generalform factor of this potential
enablesus to reproduce accurately the bound spectrum of the nucleus.

The main idea of the method is to expand the projectile wave func-
tion onto an angular Lagrange mesh and to discretise the radial variable
over a quasiuniform grid [MB99, CBMO03b]. The advantage of this three-
dimensionalmeshis that the represemation of the time-dependert potertial
is fully diagonal. Moreover, the matrix elemens of this potential merely
consistof the valuesof the potertial at the meshpoints. This meansthat its
treatment is very straightforward, and that the nuclear interaction between
the projectile and the target may be simulated by optical potentials without
any further analytical treatment. Furthermore, a simple basischangeleads
to a band represemation of the Hamiltonian modelling the internal structure
of the halo nucleus. This expansionis then usedto derive an ewlution algo-
rithm in which the e ect of the time-dependert potential and of the projectile
Hamiltonian are taken into accourt separately

In this work, seeral aspects of this method have beenanalysedso as to
assesghe validity of someof the assumptionswe make. Firstly, we have
studied the modelling of the nuclear interaction betweenthe projectile and
the target. It has beenshown that, in the caseof halo neutrons, a mere
impact-parameter cuto cannot reproduce the e ect of optical potentials
at all energies. This suggeststhat an accurate description of the Coulonmb
breakup of one-neutron halo nuclei should include a precise modelling of
the nuclear interaction. For proton-halo nuclei, howewer, it seemsthat the
e ect of the nuclearinteraction can be rather well reproducedby an impact-
parametercuto . This is dueto the fact that the nuclearinteraction between
the halo proton and the target is hindered by the Coulomb interaction.
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Secondly we have analysedthe validity of the appraximation which con-
sistsin using straight lines instead of the Rutherford trajectories. This ap-
proximation seemsto be legitimate at the energiesconsideredin our model
for the calculation of the breakup crosssection. Howewer, the curvature of
the trajectory must be taken into accournt when calculating the momertum
distribution.

Finally, we have studied the in uence of the presenceof Pauli-forbidden
statesin our model of the halo nucleus. These states are obtained when a
deeppotential is usedto model the core-halointeraction. They simulate the
Pauli principle betweenthe halo nucleonand the nucleonsof the core. Since
the results of our calculations are not strongly modi ed when these states
are removed, we concludethat their presencemay be ignored in breakup
calculations[CBMO03a).

Making use of these results, we have studied the Coulonmb breakup of
three nuclei: 'Be, °C and ®B. 'Be is the best known one-neutron halo
nucleus. Its Coulomb breakup hasbeenextensiwely studied both experimen-
tally [Nak94, Nak03 and theoretically [KYS96, MB99, TS01b]. Newvertheless,
someuncertainty remainsabout the structure of its ground state. Most of the
studiessuggestthat this structure is dominated by a con guration in which
a s1=2 neutron is looselybound to *°Be corein its 0" ground state. Howe\er,
the exactvalue of the correspnding spectroscopicfactor is still cortroversial.
The good agreemen betweenour calculationsand the experimertal data of
[Nak03 suggestghat it should be closeto unity. Howeer, the preliminary
analysis of this experimert, as well as another recert breakup experimert
[Pal0d], lead to a lower spectroscopicfactor. The comparisonbetweenthe
value of [Nak03 and that obtained from our calculation will have to wait for
the publication of thesedata.

15C is a candidate one-neutron halo nucleus whose Coulomb breakup
has just been studied experimertally [Nak03. The breakup crosssections
computed with our model are in good agreemeh with the preliminary ex-
perimertal data. It seemstherefore that our model descrikesthis reaction
fairly well. Since®®C is seenasa “C corein its 0" ground state surrounded
by a s1=2 neutron, the analysisof our results suggestghat the spectroscopic
factor correspndingto this con guration shouldbeslightly lower than unity.
Howewer, no precisevalue of the spectroscopicfactor may be extracted from
this study beforethe publication of the experimertal data.

8B is of particular interest from two points of view. Firstly, it is a one-
proton halo candidate. Secondly its Coulomb breakup may be related to
the inversereaction of the "Be(p, )®B radiative capture that takes placein
the sun [BR96]. We have comparedthe parallel momenium distributions
obtained with our model with the experimertal data of Ref. [Dav01]. We
have seenthat the theoretical distributions agreequalitativ ely in width and
magnitude with the experimertal ones. Howewer, no quartitativ e agreemen
could be obtained. Moreover, the asymmetry obsened experimertally, which
is characteristic of the distribution, could not be reproducedwith our model.
This has beenunderstood as an inaccuracyin our calculation of the distri-
bution. Therefore,no conclusioncould be drawn about the pertinenceof the
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two-body model of B.

In this work, we have deweloped an accurate semiclassicablescription of
the Coulomb breakup of one-rucleonhalo nuclei. Thesenuclei are currently
modelled by a two-body structure. Sincethe method does not restrict to
fragmerts with 1/2 spin, it could be usedto study the breakup of other two-
body projectiles. Howewer, in our model, the coreis assumedo be spinless.
In order to apply our method to more generalnuclei, this model should be
extendedto coreshaving a spin di erent from zero.

This technique allows an accurate and straightforward modelling of the
nuclear interaction betweenthe projectile and the target. Although it has
beenusedonly for the study of Coulomb breakup, this method could alsobe
appliedto analysenuclear-inducedoreakup. This meansthat the disscciation
of halo nuclei on light targets could be investigatedwith our method aswell.

In the future, besidesthe extensionsof our method mertioned above, we
plan to improve the projectile description. In order to extract information
about the halo structure from the breakupreactions,it would be of particular
interest to test other modellings of the halo nuclei than the simple two-body
model usedup to now. For example,including a description which takesinto
accour the excitation of the corewould leadto a signi cant improvemert of
the method.

Furthermore, the extension of this semiclassicalmodel to two-neutron
halo nuclei is conceiable. Howeer, this cannot be acieved without im-
proving signi cantly the time-ewlution algorithm so asto read a ordable
computational times.
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App endix A

Calculation of the time
integrals 1

In Sec.3.4.3,we have seenthat the rst-order appraoximation of the breakup
and excitation probabilities include anintegral over the time (3.66). Thesein-
tegrals canbe calculatedanalytically rather easilyfor dipole and quadrupole
transitions when straight-line trajectories are considered. In this appendix,
we detail the calculation of theseintegrals.

For straight-line trajectories,the coordinate of the target in the projectile
rest frame R (t) can be expressedwith (3.33). Using the coordinate system
de ned by (3.34), gr(t) = ( r(1);" r(1)) is given by

vt
cos gr(t) = 19W (A.1)
: B b
sin g(t) = 19W (A.2)
' R(t) = O (A3)
This implies that
S J—
3 vt
O = _
Yr( r() = . ! pﬁ (A.4)
e = Se (A5)
! R - 8 P+ va2 '
Using (A.4) and (A.5) with [AS7Q relations 9.6.25],we obtain
8 qT
< 31 -
1901 ) = 2 %Z:Ko(x) forgq=10 (A6)
2 gzKi(x) forg= 1
wherex = ! b=y and Ko and K; are modi ed Besselfunctions [AS70 pp
374-379].
We also have
s
5 2vt2
0 — - R
YZ( R(t)) - 16 b2 + V2t2 (A7)
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s

15 bwut
Y, Y r(Y) = 8 2+ va2 (A.8)
s = =
15 03
Y, %( r(t) = §m3 (A.9)

Using theseexpressionsand [AS7Q relations 9.6.25and 9.6.26],we obtain

8 q?'2
3 q4—_'v_3K0(X) forg= 0

|g(!)=§ g SLKi(x) forq= 1 (A.10)
- 512

Ky(x) forg= 2

24 V3

Theseresults enableus to calculate the expressiong3.67) and (3.69) of
Sec.3.4.3.



App endix B

Storage of the wave functions
and the Hamiltonian terms

This appendix examinesthe practical aspect of the storage of the wave-
function componerts and the Hamiltonian matrices Fiy and ¥ described in
Sec.4.1.4. The main problem we are facedwith is the storage of the wave
function expressedn the spherical-harmonicbasis. In Chapter 4, we have
indeedseenthat, in this basis,the projectile Hamiltonian H is represeted
by a band matrix Hgy. Sincethe bandwidth dependsstrongly on the ordering
of the wave-function componerts, it is very important to nd a suitable
storagesoasto reducethe matrix size.

In the Lagrangebasis,the problem of the storageof the wave function is
much simpler. Sincethe matrix ¥ represeting the time-dependert potertial
is fully diagonal,the orderingof the componerts isindeednot very important.

In Sec.4.1, we have seenthat in the spherical-harmonicbasis,the wave-
function componerts (4.28) depend on three quantum numbers: the orbital
momertum |, its projection m;, and the spin projection m,. We also know
that the radial variableis discretisedupon a quasiuniformmesh(seeSec 4.2).
Therefore, the radial dependenceof the wave function is represeted by an
index j, that denotesthe position in the radial grid. This meansthat the
value of the wave function is fully determined by four numbers (the three
quantum numbers and the radial index).

In our implemertation of the algorithm descriked in Chapter 4, the
wave function is stored in a one-dimensionarray. The size of this array
isN N, (21 + 1), whereN is the number of angular functions (seeSec.4.1.3),
N, is the number of radial points, and (21 + 1) is the number of possible
projections of the fragmert spin|. In orderto nd an appropriate ordering
of numbersl, m;, m; and j,, let us have a look bad at the elemers of H
(4.50):

" )
2 +
MO = 5 o i O mee

+hmim L FImAmPivy (r,) jjo memmoeme 1o (B.1)

where dl(zfo correspnd to the matrix elemertts of the discretisation of the

radial di errential-operator (4.49).
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From (B.1), we know that M, is diagonal with respect to the orbital
momertum | andthe projection of the total angular-mometum m = m;+m,.
The wave-function componerts shouldthereforebe stored accordingto these
good quartum numbers. The two remaining numbers,m, (or m;) andj, are
linked to the sourcesof the non-diagonalterms of Ay: the spin dependence
of the core-fragmen potential (3.5), and the nite-di erence appraximation
of the di erential-operator (4.48).

With the aim of reducing the bandwidth of Hy as much as possible,we
order those numbers in the following sequencefrom the slowvest varying to
the fastestvarying:

(hmjemp): (B.2)

This meansthat for ead value of |, we considerall the possiblevaluesof m,
for eat value of which we considerewery radial-mesh points, and at eath
radial point, we considerall the possiblevaluesof the spin projection m, .
The value of m, is deducedfrom thoseof mandm;, (m;=m m,).

The general structure of A, obtained with this ordering, is a block-
diagonalmatrix (seeFig. B.1). Each of thoseblocks correspndsto a certain
value of | and m. They canbe seenas matricesof small blocks referredto by
the coupleof radial indices(j,;j . Thesesmall blocks correspnd indeedto
squarematrices whoseelemerns are composedof the matrix elemerts (B.1)
correspnding to radial indices(j;j?) ewaluated at xed | and m for all the
possiblecouplesof spin projections (m;;m?). The size of the small blocks
(r:j9), depending on the number of possiblevaluesof the spin projection,
variesfrom oneblock (I; m) to another.

From (B.1) we seethat the small blocks (j;j ) are full of zerosfor j? <
jr Ngandj?> j, + Ng. This meansthat the blocks (I;m) exhibit a
(2N4 + 1)-band structure (seeFig. B.2).

The non-zerosmallblocks (j;j %) which areo -diagonal (i.e. with j, 6 j?)
correspnd to the non-certral terms of the nite-di erence formulae (4.49).
Since the di erential operator does not depend on m;, these o -diagonal
small-blocks are diagonal matrices.

The small blocks (j,;j) (i.e. thoselying on the diagonal) are full. Their
diagonal elemens cortain the certral part of the core-fragmen potertial,
the diagonal elements of the spin-dependent part of this potertial, and the
certral term of the nite-di erence formulae. Their o -diagonal elemerts
correspnd to the non-diagonalelemens of the spin-dependert part of the
core-fragmen potertial. All theseelemerts are, of course,evaluated at r;, .

The precedingremarksshow that the ordering (B.2) of the wave-function
componerts leadsto a block-diagonal structure of Hy,. Eadh block corre-
spondsto a certain value of | and m and exhibits a band structure. Sincethe
number of possiblevaluesof m, is a function of | and m, the bandwidth varies
from oneblock to another. For example,consideringa fragmert spin| = %
we usually have 2 possiblevaluesof its projection: m; = % Howewer, when
|=0andm= 1 onlym, = 1ispossiblesincem, = 0.

In order to save memory space,only the non-zero(sub)diagonalsshould
be stored. We chooseto store F in a two-dimensionarray. The rows of this
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Figure B.1: Generalblock-diagonalstructure of H, obtained with the order-
ing (B.2) of the wave-function componerts. It is illustrated in the particular
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Figure B.2: Small-block structure of one of the diagonal blocks of Hy. The
full small-blocks are represeted by a letter f while the diagonal onesare
represeted by d. It isillustrated herein the particular caseof Ny = 2.
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array correspnd to those of Hy. Its columns comprisethe (sub)diagonals
of Hy. For simplicity, the number of columnsis set equalto the maximum
bandwidth of the (I; m) blocks, which is 2Ng4(2I + 1) + 1. This meansthat
useleszerosare stored. However, sincel is usually small, this lossof memory
spaceis not too important. For | = %, which correspndsto all the practical
caseswe have treated up to now, lessthan half the matrix elemens are nil.

As seenin Sec.4.3.4,the substepsof the ewlution algorithm involving
the Hamiltonian Hy require the use of matrices, or LU decompsitions of
matrices, which exhibit the sameband structure as H,. Thesematrices, or
their LU decompositions, are thus stored using the samekind of array.

As already mertioned, in the Lagrange basis, things are much easier.
In this basis, the componerts of the wave function (4.31) depend on two
numbers: the Lagrange-meshindex i and the spin projection m,. As in the
previous case,the radial dependenceis represeted by the index j,. This
meansthat the value of the wave function expressedn the Lagrangebasisis
fully determinedby the triplet (i; m;;j,).

We have seenin Secs.4.1 and 4.2, that, in this basis,the represemation
of the time-dependert potential V is a fully diagonalmatrix (4.41):

0
95 VO T 0 5,00 mym: (B.3)

The Lagrange-meshindexi, the spin projection m, and the radial-meshindex
jr cantherefore be orderedin any sequencdo obtain the index of the one-
dimensionarray in which the wave function componerts are stored. We have
chosento usethe following one:

(rsmysi): (B.4)

In other words, at ead radial point, we considerevery projection of the spin
m,, and for ead value of m;, we considerall the angular componerts.



App endix C

Analytical expression of
nite-di erence  form ulae

In Chapter 4, we have seenthat the radial represemation of the Hamiltonian
Ho leadsto the discretisation of a di erential operator by nite-di erence
technique (seeSec.4.2.1). In order to dewlop an algorithm as generalas
possible, we have calculated an analytic expressionof the coe cien ts ap-
pearing in the formulae. In this appendix, we derive the formulae usedin
Sec.4.2.1.

These formulae are establishedto approximate the n" derivative of a
function f at a point xo of a uniform mesh. The appraximation consistsof
a linear conmbination of the value of f at 2N4 + 1 points of the mesh. These
points are presumedto be adjacer to X, and symmetrically placed around
it. The appraximation then reads

|
ng W
3)(‘; h " cf (xo + kh) (C.1)

Xo k= Nd

where h is the step of the uniform grid. Sincewe are looking for a 2N 4" -
order method, the coe cien ts c(k”) are obtained by requiring the formulae to
be exact for any 2Ny -order polynomial.

For we are only concernedby rst- and second-orderderivatives, we re-
strained ourselhesto the correspnding formulae (i.e. n  2). Newertheless,
the following technique may be extendedto higher order.

Let P be a polynomial of order 2N:

Rla
P(x) = ax'; (C.2)

i=0
and P%its rst derivative:

Pqx) = de iaix' 1 (C.3)

i=1

D

We arelooking for coe cien ts ¢’ sothat appraximation (C.1) with n = 1

.....

senequalto 0 without restraining generality. We thus considerthe following
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setof 2Ny + 1 points

Xk = kh k= Ng;:::;Ng: (C.4)
This gives
d ) R . d XD
Cl(() a(kh) = ah' k'Cl(<)
k= Ng i=0 i=0 k= Ng
= PO
= a
(C.5)

k' ¢ =i i = 0;::::2Ng: (C.6)

The matrix of this set of equationsis nothing but a Vandermondematrix
assaiated to the set of 2Ny + 1 points x,=h (seeRef. [PFTV86, Sec.2.8]).

We know that the inverseof sud a matrix is composedof the coe cien ts
of the 2Ny + 1 Lagrange interpolating-polynomials over the xx [PFTV86,
Sec.2.8]. Moreover, from equationset (C.6), we seethat only the coe cien ts
of the rst-order term of thesepolynomials must be known to calculate the
coe cien ts cl((l). This can be performedeasily and we nd that

=0 (C.7)

and

(Ngh)?
K(Ng  K)(Ng + K)!

¢ =( 1kt (C.8)

which correspndsto (4.44).
The samesdiemecan be followed to obtain an analytical expressionfor

the coe cien ts cff). We then have to solve the following set of equations

k' ¢ =0 i = 0;:::;2Ng: (C.9)

The matrix of this equation set is the sameasthat in (C.6), but the right-
hand sidehaschanged. In this case the coe cien ts of the second-ordeterms
of the Lagrangeinterpolating-polynomials the must be calculated. This can
be donerather easily and we nally obtain

K= 2" j3 (C.10)

and

c? = 2dM=k: (C.11)



App endix D

Prop erties of Hg

This appendix examinessometechnical aspects of the represemation of the
Hamiltonian Hg. In the rst section,we detail and test the di erent solutions
proposedto approximate the di erential operator at the bordersof the mesh.
In the secondsection, we analysethe hermiticity of the discretisation of the
projectile Hamiltonian. The third sectionexaminesthe unitarity of the Ho-
dependen factors of the approximation of the ewlution operator.

D.1 Boundary appro ximations

Whenusinga nite-di erence techniquefor discretisingdi erential operators,
we are facedwith a di cult y at the bordersof the mesh. Indeed, symmetric
formulae (4.43) and (4.45) cannot be usedat initial and nal points of the
mesh for they would require values of the function outside the considered
interval.

A rst attempt to solve this problem could be to use non-symmetric
formulae [AS70, Chapter 25]. This would slightly decreasethe accuracy of
the approximation. Moreover, the simple band structure of the matrix would
be lost. This solution would thus complicate the algorithm implemertation.

In order to introduce other solutions, let us have a look at the behaviour
of the wave function at both endsof the mesh. Becausehe wave function is
squareintegrable, it vanishesfor r ! 1 . In our grid calculation with nite
radial interval, this is approximated by

Mr;t)=0 88r ry,: (D.1)

This meansthat the wave function is supposedto be negligibleat the end of
the meshat any time. This will be the caseif ry, is chosensu cien tly high.
Therefore,symmetric nite-di erence formulae canbe usedby assumingthe
wave function to be nil beyond the last point of the mesh.

At the origin, the situation is not as simple. From expansion(4.27),
we know that the wave-function componerts in the spherical-harmonicbasis
must vanishat r = O:

Mr=0t)=0 8t (D.2)
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With the aim of avoiding non-symmetric nite-di erence formulae near the
origin, we have tried three appraximations. The rst one consistsin using
(2Ng4 + 1)-point symmetric-fornulae (4.43) and (4.45) while consideringthe
wave function to benil outsideof the mesh. Wewill referto it asthe truncated
approximation.

In the secondappraximation, we assumethe wave function to be odd in
the vicinity of the origin. It can therefore be extendedfor negative r values
so that symmetric nite-di erence formulae can be used. This constitutes
the odd approximation.

The third appraximation we have considereddoesnot make any assump-
tion upon the behaviour of the wave function at the origin. We merely use
formulae with di erent Ngs at the rst points of the mesh. Becauseof con-
dition (D.2), the derivative (4.42) at the point r, = r(h) of the meshcan be
approximated by 3-point formulae (N4 = 1) without any assumptionabout
the wave-function behaviour. At the point r, = r(2h), the di erential op-
erator can be appraximated by 5-point formulae (Ng = 2). Following this
idea, we can use the appropriate formulae at the rst points of the mesh,
increasingNy until we read the chosenvalue. This method will be referred
to asthe progressiveapproximation. Its major drawbad is that the error
due to discretisation is not consistert throughout the mesh. Lessaccurate
formulae are indeed used near the origin. Howewer, the number of points
wherethis occursis limited to two or three.

In order to test and comparethose three approximations, we have cal-
culated the physical bound states of !Be with ead of them. Being located
mainly nearthe origin, those statesshouldindeedbe more sensitive to these
approximations than the breakup componerts. The bound states are ob-
tained by calculating the eigervectorsof Hy. In order to obtain a reference
calculation, we have computedthe bound statesusing a Numerov algorithm
[Ray72, Sec.2]. The potential modelingthe core-fragmen interaction in *'Be
and the bound spectrum of this nucleusare detailed in Sec.5.1.1.

The quasiuniform grid usedfor this test is the sameas that we use for
the ewlution calculations. It is obtained with the g, distribution descriked
in Sec.4.2.3with a = 5 and xo = 0:6. The meshextendstill ry, = 800fm,
and the number of points is setequalto N, = 1000. The number of points
in the nite-di erence formulae is chosenequalto 7 (i.e. Ng = 3), unless
for the rst mesh points in the progressive appraximation. The Numeros
calculation used for comparisonhas been performed on the radial interval
[0,100fm] with a constart stepof , = 10 2 fm. This method ensuresa
relative accuracyof 10 7.

Table D.1 cortains the calculation results. Its rst row comprisesthe
values of the bound-state energiesobtained with the Numerov algorithm.
For eat approximation, we display the calculated energyand the error on
the wave function for ead bound state. The latter correspndsto the norm
of the di erence betweenthe wave function obtained with the quasiuniform
grid and the referenceone computedwith the Numerov algorithm:

Error = jj approx Numerovii. (D.3)

nlj nlj
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1s1=2 Op1=2
Approximation | Energy (MeV) | Error | Energy (MeV) | Error
Numerov -0.50128500 - -0.18446054 -
truncated -0.49890904 | 1.310 3| -0.18446054 | 4.110 8
odd -0.50130598 | 1.110 ® | -0.18446055 | 4.710 8
progressive -0.50128500 | 4.810 ° | -0.18446054 | 4.010 8
Uniform grid -0.53636139 | 1.910 ? - -

Table D.1: Analysis of the di erent approximations at the origin. Calcula-

tions are performedwith a quasiuniform meshextendingup to ry, = 800fm

using N, = 1000radial points (Ngq = 3). The rst row cortains the reference
valuesobtained with the Numerov algorithm. The last row displays the re-

sults obtained with a uniform grid usingthe odd appraximation (N, = 1000,
rn, = 800fm and Ny = 3).

In this expressionboth functions are normalisedto unity.

We seethat the results are usually better for the Op% excited state than
for the 1s ground state. Moreover, the accuracieson the former are more or
lessthe samefor all appraximations whereasthey di er widely from onecase
to another for the ground state. This is due to the fact that a partial wave
with orbital momertum | varies asr'** near the origin [GP90, Chapter 6].
The p state calculation is thereforelesssensitive to the appraximation at the
origin than that of the s state.

The accuracyof the appraximations canthus be studied by analysingthe
error on the ground state. Of all the appraximations the truncated oneseems
to bethe worst. It indeedexhibits relative errorson both the energyand the
wave function of the order of 10 3. Then comesthe odd appraximation with
a relative error on the bound state around 10 °. This improvemen with
regardto the previouscasemight be due to the fact that the wave function
behaves, near the origin, asr, which is an odd function.

The best approximation is the progressiveone. It exhibits errors of the
order of 10 ® 10 8 which are signi cantly better than in any other case.
Moreover it also gives one of the lowest errors on the excited state. This
meansthat the errorsintroducedby the lower-orderformulae usedat the rst
mesh-mints are negligiblein comparisonwith thosedue to appraximation of
the wave-function behaviour nearr = 0.

With the aim of illustrating the usefulnessof the quasiuniform grid, we
have performedthe samecalculationwith a uniform grid. We have chosenthe
sameextensionof the mesh(ry, = 800fm), and the odd appraoximation near
the origin. We have kept the sameparametersof the radial discretisation
as those used for the quasiuniform meshes:N, = 1000and Ng = 3. The
results are summarisedin the last row of Table D.1. We can seethat using
a uniform grid leadsto very poor results. The ground state energyis known
with only one-digit accuracy The error (D.3) on the correspnding wave
function is of the order of 10 2, which is relatively large when compared
with the 10 ° error obtained with the quasiuniformmeshand the progressive
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approximation. The excited state, as for it, could not be reproduced with
the uniform mesh. In fact we should have usedN, = 10000points to reath
a similar accuracyasin the caseof the quasiuniform grids. In other words,
with a uniform grid, we needten times the number of radial points of a
quasiuniform grid to obtain the sameresults. This meansapproximately a
ten times longer ewlution calculation, which is of coursenot a ordable in
practical cases.

The precedingremarksjustify then the useof a quasiuniformgrid with the
progressiveapproximation which hasbeenchosenfor practical calculations.

D.2 Hermiticit y of the Hamiltonian appro xi-
mation

We have seenin Sec.4.2.2,that the useof a non-uniform grid leadsto an
asymmetric represetation of the di erential operator (4.48). This means
that Fy is not symmetric although Hgy is hermitian. Howewer this non-
hermiticity of Hy decreasesvhen a higher number of points is chosen. This
meansthat the Hamiltonian represemation is approximately hermitian.

In order to \measure" the non-hermiticity of our approximation, we
comparethe approximations of matrix elemerns h jHqj »i and h ,jHgj 1i.
They should be conjugate-complexfor Hg is hermitian.

As already mertioned, the asymmetry of H, is due to the discretisation
of the di erential operator. In order to emphasizethis, we only considerthe
kinetic term of Hy with s wave-functions ; and ;. They are normalisedto
unity and their radial parts are chosenequalto

uy(r) = Cre © (D.4)
for ; and
uy(r) = Dre (&5 9’ (D.5)

for 5. In theseexpressionsC and D are normalization constarts. These
functions are chosenfor their generaland simple forms. Moreover, they
satisfy the boundary conditions of the problem (D.1) and (D.2). In order to
ensurethat the functions do not decreasedoo rapidly, r is divided by 10 in
both expressions.

The matrix elemerts of Hy are calculated under those assumptionsfor
three valuesof N, (10, 100 and 1000) and the three boundary approxima-
tions consideredabove. The quasiuniform grid is chosenequal to that used
in the previous section. Table D.2 displays the hermiticity error. It corre-
spondsto the relative di erence betweenthe matrix elemerns h 1jHqj »i and
h 2jHoj 4i.

Another advantage of the simple expressiongD.4) and (D.5) is that the
matrix elemens can be calculated analytically. Table D.3 cortains the dis-
cretisation error. This error correspndsto the maximal relative di erence
betweenthe approximated matrix elemens and the exact value.
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Approximation | N, = 10 | N, = 100| N, = 1000
truncated 17102 | 57108 | 2.210 8
odd 20102 | 24107 | 1.410 10
progressive 0.11 1.010° | 1.010°
Uniform grid | 1.910 **| 45101 | 1.110 *

Table D.2: Hermiticity error: relative di erence between matrix elemens

h 1jH0j zi and h szQj 1i.

Approximation | N, = 10| N, = 100| N, = 1000
truncated 020 | 44104 | 4.410°
odd 0.21 3.610° 3.410°
progressive 030 |6.910°% | 7.110°8
Uniform grid 1.8 0.14 1.110 4

Table D.3: Discretisation error: maximal relative di erence betweenmatrix
elements h 1jHoj 2 and h ,jHqj ii, and the exactvalue.

We seefrom Table D.2 that the asymmetry of Hy indeed dependsupon
the number of points of the radial mesh. We seealso that the choice of
the approximation at the origin deeplyin uences this non-hermiticity error.
Regarding this hermiticity criteria of quality, the truncated approximation
seemdo be the best. The non-hermiticity obsened for the odd approxima-
tion lies slightly below. In this case,the progressiveapproximation seemso
provide the worst results. This is due to the fact that di erent formulae are
usedat the rst points of the mesh. This indeedworsenthe asymmetry of
the matrix.

When the computed matrix elemertts of Hy are comparedwith the exact
value, the situation is the sameasthat obsenedin the analysisof the bound
states (seeSec.D.1). The progressiveapproximation seemsindeedto give
the best estimation of the matrix elemens while the truncated approxima-
tion leadsto the lessaccurateresults. This meansthat Hg is more symmetric
when the truncated approximation is usedbut that the correspnding dis-
cretisation of the di erential operator is rather poor. It is therefore more
interesting to usethe progressivewhich is lesssymmetric but hasthe lowest
discretisation error.

For comparison,we have performedthe sametest with the uniform mesh
usedin the previous section. It extendsup to ry, = 800fm and the odd
approximation is usednearthe origin. In this case A is perfectly symmetric
(seeEq. (4.49) with g(x) = x). Thereforethe matrix elemens h 1jHqj »i
and h ,jHqj i are equal but for the roundo errors. As expected, these
errors are increasingwith the number of points. The accuracyof this mesh
is howewer rather poor as can be seenfrom the high discretisation error
obtained with this mesh(seeTable D.3). Here again, the number of points
hasto be increasedup to N, = 10000to obtain an error of the sameorder
of magnitude asthat of the quasiuniform grids.

This study showsthat the useof quasiuniformmeshedeadsto an approx-
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Approximation | N, = 10 | N, = 100 | N, = 1000
truncated 1.110°% | 5710° | 6.710 *°
odd 11102 | 6.010° | 3.610 *
progressive 43103 | 2510° | 6.710 3
Uniform grid | 4.410 ¢ | 2.210 ¢ | 6.710 °

Table D.4: Relative error on the norm of the wave function after one time
stepof 1 h/MeV. The calculationsare performedfor N, = 10, 100,and 1000
radial points. The quasiuniformgrid correspndsto the g, distribution (4.52)
with ry, = 800fm, a = 5 and xo = 0:6. The last row of the table displays
the results obtained with a uniform grid that extendsup to ry, = 800fm.

imately hermitian represemation of Hy. This meansthat the matrix Hy is
not symmetric but that the hermiticity error canbereducedby increasingthe
number of meshpoints. It alsocon rms that the progressiveappraximation
leadsto the fairest description of the Hamiltonian H,.

D.3 Unitarit y of the appro ximation

It hasbeenmertioned in Sec.4.3.5that our second-orderappraximation of
the ewlution operator is approximately unitary. That is to say that the
norm consenation of the wave function is directly linked to the accuracyof
the radial discretisation.

In order to illustrate this approximate unitarity, we have performedthe
following test. We make a given wave function ewlve and calculate the rel-
ative error on its norm after one time-step. Sincethe non-unitarity is due
to the asymmetry of the discretisation of the di erential operator (4.48), the
Hamiltonian Hg is solely composedof its kinetic term and the wave function
is supposedto be an s wave. For the samereason,the time-dependen per-
turbation V is not considered.Therefore,it correspndsto the propagation
of a free's wave.

The initial wave function is chosenequalto the wave function ; (D.4).
The time stepis setequalto t = 1h/MeV. The wave function is discretised
over the samequasiuniformradial grid asin the precedingsections.TableD.4
givesthe relative error on the norm of the wave function after onetime-step.

As in the caseof the approximate hermiticity of Hg, the norm consena-
tion improves when the number of radial points is increased. The ranking
of the approximations at the origin is the same as that obtained for the
non-hermiticity. The most unitary ewlution operator is obtained with the
truncated appraximation while the lessunitary operator is derived from the
progressiveapproximation. This is due to the fact that the unitarity of the
ewlution operator is directly linked to the hermiticity of Hy. Howewer, we
seethat the di erences betweenthe approximations are not very signi cant.
Thereforethis test cannot be usedto selectthe approximation at the origin.

This test has also beenperformedwith a uniform grid (last row of Ta-
ble D.4). The errors on the norm remain appraximately constart with the
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number of points, and their magnitude is of the order of the computer accu-
racy. This is logical sincea uniform grid leadsto a symmetric appraximation
of Hy (seeSec.D.2), and that the Pade approximation (4.79) is exactly uni-
tary when symmetric matrices Hy are considered.

Theseresults con rm that our appraximation of the ewlution operator
is approximately unitary and that the norm of the wave function is well
presenedif the radial grid contains enoughpoints. The accuratedescription
of the unperturbed Hamiltonian H, therefore ensuresa negligible error on
the norm of the wave function.
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App endix E

Fourth-order evolution
algorithm

In this appendix, we descrike a fourth-order approximation of the ewlution

operator. It wasdewelopedto increasethe corvergenceof our algorithm in or-

der to reducethe computational time. It hasbeentestedin one-dimensional
problems[BGCO03], and has provento give accurateresults. However, it has
not yet beenimplemerted in this three-dimensionalalgorithm.

E.1 Fourth-order appro ximation

This algorithm hasbeenobtainedfrom the Magnus expansionof the ewolution
operator (4.58) up to order four:

i VAYEN
U(t+ tt)=exp = H (t9dt°
t
1 212 #
2 [H(t%Y; H (t°] dt®dt°+ O( t°) : (E.1)
to to

Taking (4.1) into accoun leadsto
( ¢ 3 )
Utt+ ) =exp  i[Ho+ Wat)]  —o[HoiWz(t)] + O( t°) (E2)

where
1 Zis ¢
Wi (t) = — V (t9dt° (E.3)
t
and
1 Zr 12y 0 00440
Wot) = =5 V() V(O] d
Z
_ 1 t+ t t 0
= 5, (t+7 tYV (t9Ydt® (E.4)

Theseexpressiondave beenchosensothat both W, and W, have nite limits
when t! O.
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Using the BCH corollary (4.66), (E.2) can be factorised as follows:

Ut+ tt) = exp iTtZWZ(t) exp th[Ho+ Wi ()] + O( t°)
" #
exp ihtzwz(t) : (E.5)

Usingthe corollary (4.65) of the BCH formula onecanexpandthe certral
term of (E.5) as

exp iFt[H0+ Wi(t)]+ O( t°) = exp iG—r:Wl(t) exp iz—r:HO
exp i23ht¢/v1(t)
exp iz—r:Ho exp i6_r:W1(t)
(E.6)
where
Wi(t) = Wa(t) 4?;122[\/Vl(t);[Ho;W1(t)]]i (E.7)

Using the expressionof Hg (3.4), this can be evaluated analytically:

2
Wi) = Walt) + oo WA s WaCo)]

2
Wilt) i WaCO) E8)

Sincethe expressiorof the time-dependert potertial V is known analytically,
the computation of its gradiert can be performed without any di cult vy.
The introduction of this factor in the ewlution operator is therefore quite
straightforward.

Using (E.5) and (E.6), and grouping the exponertials of W, with that of
W, leadsto the following factorisation of the ewlution operator

" #
2

t W;(t)

Uit+ tt) = exp itwl(t)+ih

6h
exp i—tHo exp iz—ht‘le(t) exp i—tHo
.. 3

2h 2h
exp W (1) i—tzw (t) +O( t°): (E.9)
p 6h 't hoV2 : .

Becauseof the higher order of this algorithm, the integrals over time
appearingin W, (E.3) and W, (E.4) have to be approximated with a higher
precisionformula than the midpoint one. The Simpson'srule [AS70,Chapter
25] gives:

[ERN

Wi (t) = 5 V(t) + 4V(t + 7t)+ V(t+ t) +0( th (E.10)
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and

W,(t) = Tlt[v(t) V(t+ t)]+ O( t?): (E.11)

From (E.2) it can be seenthat this is su cient to presene the fourth-order
accuracyof the method.

E.2 Evolution algorithm

The ewlution algorithm canthereforebe obtained by introducing (E.10) and
(E.11) in (E.9). It should be noted that, asin the second-orderalgorithm
(4.70), the last exponertial of the ewlution operator (E.9) at one step can
be grouped with the rst oneof the next step. After N; time steps,the wave
function reads

t t? i
Ot " exp i67hW1(tN‘) + iTWZ(tN[)

A 2t .t
exp 5 Ho exp |¥‘Wl(tNt) exp i Ho

( , )
exp i Wiltjon) + Wat)] + i Waltyn) + Wo(t)]

t

. 2t ot

exp i Ho exp |¥‘W1(tj) exp  iHo
( ¢ 2 )

exp iG*h[Wl(tl) + Wi (to)] + iT[WZ(tl) + W(to)]

.t 2t .t
exp 5 Ho exp |3—h‘flvl(t£) exp  io-Ho

ot o t2 : :
exp |67hW1(t0) ITWZ(tO) j ( to)i (E.12)

wheret; = to+ j t. In this expression,Wi(t) and W,(t) are ewvaluated
following (E.10) and (E.11) respectively.

The error at eath step of this algorithm is of the order of t°. The
number of time stepsN; being proportional to t !, leadsto a global error
in O( t%.

In this algorithm, the time step hasbeensplit in four substeps.At eah
substepthe correspnding factor of the ewolution operator is propagated. As
in the second-ordemapproximation, a changeof angular basisis performedat
ead substepsoasto expressthe exponertial operatorsin their easiestform.

E.3 Appro ximation of exponential operators

When expressedn the Lagrangeangular-basigseeSec.4.1.3)and discretised
upon the quasiuniformgrid (seeSec.4.2.1), the time-dependen potential V
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is represered by a fully diagonal matrix. The exponertials of the operators
dependingon V are therefore easily calculated, as explainedin Sec.4.3.4.

Becausef, is a band matrix, the exponertials of H, are appraximated
with Pade dewelopmerns (4.75) (see Sec.4.3.4). In order to presene the
fourth-order accuracy of the stheme, we usethe (2;2) Pade expression. It
reads

1
Ro(A) = 1 %A + %ZAZ 1+ %A + %ZAZ ; (E.13)
This expressionincludesthe squareof the matrix to be exponertiated. As
canbe easilyshavn, the squareof a band matrix hasa band structure aswell.
It merely exhibits a larger bandwidth. Therefore,the techniquesdetailed in
Sec.4.3.4s0asto compute the exponertials of Ay can be extendedto this
fourth-order algorithm.

Implemerting this new approximation of the ewlution operator is thus
quite easythanks to the useof two angular bases.Apart from the useof a
(2; 2) Pade dewlopmert, it doesnot require any signi cant modi cation to
the second-orderlgorithm.



App endix F

Evaluation of the time iInterv al

In this appendix, we analysethe e ect of the truncation of the time interval
on the breakup probability dP,,=dE (3.38). We mainly considerlargeimpact
parameterswhere the convergenceof the scheme with regard to the time
interval seemsto be slowver. This study will enable us to derive a rough
estimate of the truncation error. It canbe usedto evaluate the time interval
which hasto be usedin an ewlution calculation.

Let us have a look badck at the rst-order perturbation theory Sec.3.4.3.
In that theory, the breakup probability canbe calculatedwith (3.67). In that
expressionthe time dependencereducesto the calculation of integrals over
time (3.66). If we approximate the classicaltrajectory by a straight line, and
take only the E1 transition into accourn, theseintegrals can be worked out
rather easily (seeAppendix A).

In order to have an insight on what happensin the time-ewolution calcu-
lation whenthe time interval is truncated, let us perform the integrals (3.66)
with = 1 over a nite interval [tih;tou]. Becauseof the time symmetry
of the rst-order perturbation calculation, we considersymmetric intervals

tin = tour = T. Using (A.4), the integral over time for = landq= 0
then reads:
2 it vt

ECP I T

dt (F.1)
wherev is the relative velocity, bis the impact parameter,and! = (E Eg)=h
(where E is the relative energyof both fragmernts after dissaiation, and E
is the energyof the initial bound state). In order to comparethis truncated

integral with the full one,let us rewrite it as

z vt Z1 vt

1

Oy - - il t I in(! -
17(1;T) . e @ + Va2 v2t2)3=2dt 2i . sin(! t)(bZ+ V2t2) 2
Using the modi ed Besselfunction properties [AS7Q relation 9.6.25], and
calculating the secondterm by partial integration, we obtain

dt. (F.2)

o - ! V3 T |
3Z, 242
Y oA (F.3)

77 . cog! t)—(b2 V)52
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whereK, is a modi ed Besselfunction and x = ! b=v
The breakup probability (3.38) is calculatedfrom the squareof the mod-
ules of the time integral. The cortribution of the truncated time-interval
(F.1) is therefore
(

)
10 MiE = 4!\; [Ko(X)]? + 2K o(X)

ve T 1
cog!' T) + O(ﬁ

(F.4)

The rst term of this expressionis nothing but the cortribution of the
time integral evaluatedover[1 ;1 ]. The next onecorrespndsto the rst
error term due to the integration over a nite time-interval. It consistsof an
oscillating function whoseamplitude vanishesfor T! 1 asT 2.

The samekind of expressioncan be derivedfor q= 1. In this case,the
time integral (3.66) performedover a symmetric nite interval reads

Z+ b

l, 1(| 'T) = ) g tmdt: (F.5)

Following the samestemeasfor g= 0, we get

bV 1 .
T2 (B + Va2 sin(! T)
21 3v2t i
cos( t)mdt (F.6)
whereK ; is a modi ed Besselfunction and x = ! b=v
The cortribution of integral (F.5) to the breakup probability is therefore

'2( bv? 1 1)

v K 1(X)]? 2K1(x)!—zmsin(! T)+ Ol

1,1 ;T) = 2% K 1(x)

| 2

i TE=4
(F.7)

Herealso,the cortribution to the breakup probability of the truncated in-
tegral contains the solution for the wholetime-interval plus oscillating error-
terms. In this casethe greatestonedecreasessT 3for T ! 1.

If oneassumesasit is the casehere!, that K o(! b=\ and K (! b=y are of
the sameorder of magnitude, the main error term shouldbe that of I 2(! ; T).
Therefore, the relative amplitude Ar of the oscillating error term is of the
order of the ratio of the secondterm of (F.4) to the value obtained for the
whole time interval:

ve Ko(! b=V T _

12 [Ko(! b=y]2 + [K1(! b=y]? (I + v2T2)32’

Taking into accoun that K,(x) Kg(x) and that T is usually large (T >

20hMeV '  4000fmc 1), formula (F.8) can be approximated by
1 .

12K o(! b=y T2

Yn ourstudy,! 1MeVh !, b 10 100fm,andv 0:3c. This givesx 0:17 1:7,
and Ko(x) 2 02andKi(x) 7 0:2.

Ar (F.8)

Ar (F.9)
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Figure F.1: Inuence of the time interval on the breakup probability. The
breakup probabilities obtained from our ewlution calculationswith di erent
time intervals (upper curves) are comparedto those computed at the rst-

order approximation with the sametruncated time intervals (lower curves).
Valuesare scaledby the rst-order perturbation breakup probability (3.67).

From the precedingremarks, we seethat the useof a nite time interval
leadsto oscillating error-termsin the expressiorof the breakup probability in
rst-order perturbation theory. The relative amplitude of theseoscillationsis
appraximately given by (F.9). This expressionshows that it can be reduced
by increasingthe time-interval width. It can thereforebe usedto obtain an
estimation of the time interval neededfor an ewlution calculation.

In order to ewaluate the relevance of this analysis, we have performed
time-ewlution calculations with di erent time intervals. The calculations
have beenworked out for a *'Be projectile with a lead target. The target
is assumedto follow a straight line in the projectile rest frame at a (large)
impact parameterb = 100 fm with an initial velocity v = 0:3c. The time
intervals have beenchosensymmetric with T = tj, = toi = 20 h/MeV,
40 h/MeV, 80h/MeV, and 120h/MeV. In Fig. F.1, the breakup probability
is represered as a function of the excitation energy It hasbeendivided by
the probability obtained in rst-order perturbation theory dPE!=dE (3.67)
soasto cancelits main energydependence.

For comparison,the breakup probabilities obtainedin the rst-order per-
turbation theory with the same nite time intervals are represeted too. As
predicted form the above analysis, they are oscillating around dPE!=dE.
Their periods decreaseas T ! as obtained from formulae (F.4) and (F.7).
Moreover, formula (F.9) givesa good estimation of their amplitudes.

The breakup probabilities obtained from the ewlution calculations do
alsoexhibit oscillations. They are similar to thoseobsenedin the rst-order
calculation. This indicatesthat formula (F.9) givesa fair estimation of the
importance of the error when the time interval is truncated.
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It shouldbe noted that regardlessof the oscillations, the curvesobtained
for the broadest time intervals seemto deviate slightly from the general
pattern of those calculatedwith the lowest valuesof T. This minor increase
is dueto the fact that the projectile, being submitted longerto the in uence
of the target, hasa slightly larger probability of dissaiating. Howewer, this
deviation is rather small when comparedto the amplitude of the oscillations
at T = 20h/MeV. lIts in uence on the breakup probability canthereforebe
seenas negligible.

From expression(F.9), oneseeghat for a givenerror amplitude, the width
of the time interval is a function of the projectile-target relative velocity v, of
the excitation energythrough ! , and of the impact parameterb. In practice,
neither v nor ! do vary widely. The main variation of T is therefore due to
b.

Since Ky is a monotonous decreasingfunction, we seethat the larger
the impact parameter,the larger the time interval. This may comefrom the
fact that at largerimpact parameter,the projectile-target potertial variation
is smaller than that at small impact parameter. Therefore, one needsto
integrate farther in time so as to have a negligible potential at initial and
nal timesin comparisonwith the maximum which is located at the time of
closestapproati t = 0.

This can be a problem becausethe computational time is directly pro-
portional to the time-interval width. Moreover, the wave padet propagates
rather rapidly after the time of closestapproad. A rise of the time interval
will thereforerequire a larger radial interval, and thus more radial points.

Newerthelessthe increaseof the integration interval with the impact pa-
rameter is not always necessary If one calculatesthe total breakup cross
section (3.39) (i.e. integrated over all impact parameters), the oscillating
errors must be small in comparisonwith the total crosssection. Or, what
is more or lessequivalert, when comparingit with the highestvaluesof the
breakup probability. Thesevaluesare located at small impact parameters
(.,e. forb 10 20fm). Thereforesud a calculation can be performedwith
the sametime interval for all trajectories.

The expression(F.9) should therefore be used only when an accurate
computation hasto be performedfor a particular trajectory.
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